П. П. Гайденко история греческой философии в ее связи с наукой




Скачать 24,58 Kb.
НазваниеП. П. Гайденко история греческой философии в ее связи с наукой
страница2/33
Дата03.02.2016
Размер24,58 Kb.
ТипДокументы
1   2   3   4   5   6   7   8   9   ...   33
Глава первая


ПИФАГОРЕИЗМ И ИСТОКИ ДРЕВНЕГРЕЧЕСКОЙ МАТЕМАТИКИ


Отличие древнегреческой математики от математики Древнего Востока


Предпосылки для превращения математики в теоретическую науку, какой мы находим ее в "Началах" Евклида, впервые возникли в Древней Греции. Особенно важную роль в формировании древнегреческой математики сыграла пифагорейская школа. Однако может возникнуть вопрос: почему, исследуя, когда и как возникла математика как наука, мы обращаемся к древнегреческим мыслителям, в то время как уже до греков, в Вавилоне и Египте, существовала математика и, стало быть, здесь и следует искать ее истоки?


Действительно, математика возникла на Древнем Востоке, по-видимому, задолго до греков. Но особенностью древнеегипетской и вавилонской математики было отсутствие в ней (за исключением отдельных элементов) единой системы доказательств, которая впервые появляется именно у греков. "Большое различие между греческой и древневосточной наукой, - пишет венгерский историк науки Арпад Сабо, - состоит именно в том, что греческая математика представляет собой систему знаний, искусно построенную с помощью дедуктивного метода, в то время как древневосточные тексты математического содержания содержат только интересные инструкции, так сказать, рецепты и зачастую примеры того, как надо решать определенную задачу". Древневосточная математика представляет собой совокупность определенных правил вычисления; то обстоятельство, что древние египтяне и вавилоняне могли осуществлять весьма сложные вычислительные операции, ничего не меняет в общем характере их математики.


Эти особенности древневосточной математики объясняются тем, что она носила практически-прикладной характер; с помощью арифметики египетские писцы решали задачи "о расчете заработной платы, о хлебе или пиве и т.д.", а с помощью геометрии вычисляли площади или объемы. "...В обоих случаях вычислитель должен был знать правила, по которым следовало производить вычисление. Но что касается систематического вывода правил для этих расчетов, то о них нет речи, да и не может идти, ибо часто (как, например, при определении площади круга) употребляются только приближенные формулы".


Поскольку древневосточная математика носила практический характер, она не проводила существенного различия между вычислением количества зерна, числа кирпичей или размера площади, т.е. между решением задач, которые впоследствии разделялись бы на арифметические и геометрические. "Центральной задачей математики на ранней стадии ее развития, - пишет Нейгебауэр, - является численное нахождение решения, удовлетворяющего некоторым условиям. На этом уровне нет существенного различия между делением суммы денег согласно определенным правилам или делением поля данного размера на, скажем, участки равной площади. Во всех случаях нужно соблюдать внешние условия, в одном случае условия наследования, в другом - правила для определения площади, или отношения между мерами, или установившиеся нормы оплаты работников. Математическая ценность задачи состоит в ее арифметическом решении, "геометрия" является лишь одним из многих объектов практической жизни, к которым можно применить арифметические методы". В этом отношении характерны специальные тексты, предназначенные для писцов, занимавшихся решением математических задач. Писцы должны были знать все численные "коэффициенты", нужные им для вычислений. В списках "коэффициентов" содержатся "коэффициенты" для "кирпичей", для "стен", затем для "треугольника", для "сегмента круга", далее для "меди", "серебра", "золота", для "грузового судна", "ячменя", для "диагонали", "резки тростника" и т.д.


В Греции мы наблюдаем появление того, что можно назвать теоретической системой математики: греки впервые стали строго выводить одни математические положения из других, т.е. ввели в математику доказательство. "Отдельные математические теории, - пишет историк математики И.Г. Башмакова, - строятся как системы, основанные на доказательстве. Доказательство, система доказательств играют в нашей науке особую роль. Ведь большинство высказываний математики относится к бесконечному множеству объектов. Так, положение о том, что сумма углов треугольника равна 2d, не может быть установлено никаким конечным числом проверок: во-первых, потому, что треугольников бесконечно много и, во-вторых, каждое практическое измерение производится только с некоторой определенной степенью точности. Без доказательства никогда не могла бы быть открыта несоизмеримость величин, а без этого не существовало бы важнейших разделов современной математики. Можно сказать, что математика как наука стала существовать только после систематического введения в нее доказательств" (курсив мой. - П.Г.). Одной из причин того, что математика стала в Древней Греции теоретической наукой, опирающейся на доказательство, был ее тесный союз с философией. Этот союз определил характер не только древнегреческой математики, но и философии, особенно таких ее направлений, как пифагорейство, платонизм, а позднее - неоплатонизм. Не случайно время возникновения философии - конец VI-V вв. до н.э. совпадает с периодом становления теоретической математики.


Надо отметить, что в Древней Греции так же, как и в Вавилоне и Египте, разрабатывалась техника вычислений, без которой невозможно было решать практические задачи строительства, военного дела, торговли, мореходства и т.д. Но важно иметь в виду, что сами греки называли приемы вычислительной арифметики и алгебры логистикой (logistika - счетное искусство, техника счисления) и отличали логистику как искусство вычисления от теоретической математики. Правила вычислений, стало быть, разрабатывались в Греции точно так же, как и на Востоке, и, конечно, греки при этом могли заимствовать очень многое как у египтян, так и в особенности у вавилонян.


О логистике греков, как и о математических вычислениях на Востоке, можно сказать, что она носила практически-прикладной характер. "В состав логистики входили: счет, арифметические действия с целыми числами вплоть до извлечения квадратных и кубических корней, действия на счетном приборе - абаке, операции с дробями и приемы численного решения задач на уравнения первой и второй степени. В логистике рассматривались также приложения арифметики к землемерию и иным задачам повседневной жизни. Сами греки отличали логистику от теоретической арифметики, которую они называли просто арифметикой. Правила логистики излагались догматически и, вообще говоря, не снабжались доказательствами так же, как это было принято в египетских папирусах" (курсив мой. - П.Г.).


Таким образом, в Греции имела место как практически-прикладная математика (искусство счисления), сходная с египетской и вавилонской, так и теоретическая математика, предполагавшая систематическую связь математических высказываний, строгий переход от одного предложения к другому с помощью доказательства. Именно математика как систематическая теория была впервые создана в Греции.


Сравнивая греческую математику с древнеегипетской, голландский историк математики ван дер Варден указывает на ту границу, которая проходит между греками и их восточными предшественниками: "Достоверно, что египетский способ умножения и вычисления с основными дробями греки получили от египтян, а затем развили его до той степени, какую показывает нам Ахмимский папирус эллинистической эпохи. Но вычисление - это еще не математика.


Точно так же греки могли заимствовать у египтян правила вычисления площадей и объемов. Однако такие правила до греков еще не составляли математики; именно они поставили вопрос: как это доказать?"


Надо полагать, что становление математики как систематической теории, какой мы ее находим в евклидовых "Началах", представляло собой длительный процесс: от первых греческих математиков (конец VI-V в. до н.э.) до III в. до н.э., когда были написаны "Начала", прошло более двухсот лет бурного развития греческой науки. Однако уже у ранних пифагорейцев, т.е. на первых этапах становления греческой математики, мы можем обнаружить такие специфические особенности, которые принципиально отличают их подход к математике от древневосточного.


Прежде всего такой особенностью является новое понимание смысла и цели математического знания, иное понимание числа: с помощью числа пифагорейцы не просто решают практические задачи, а хотят объяснить природу всего сущего. Они стремятся поэтому постигнуть сущность чисел и числовых отношений, ибо через нее надеются понять сущность мироздания. Так возникает первая в истории попытка осмыслить число как миросозидающий и смыслообразующий элемент.


То, что у вавилонян и египтян выступало всего лишь как средство, пифагорейцы превратили в специальный предмет исследования, т.е. в цель последнего.


Проблема пифагореизма в научной литературе


Пифагореизм имел свою длительную историю - от основателя школы, полулегендарного Пифагора, младшего современника Фалеса Милетского (VI в. до н.э.), до неопифагореизма эпохи эллинизма (I в. до н.э.-III в. н.э.). Мы не будем входить во все детали развития пифагореизма, поскольку здесь возникает очень много сложных проблем и существует обширная специальная литература. Одной из причин, осложняющей анализ пифагорейской философии и науки в ранний период ее развития, является то обстоятельство, что пифагореизм первоначально существовал как религиозный орден, учения которого должны были оставаться тайной для непосвященных. Разглашение этих учений запрещалось10. Другой причиной, затрудняющей отнесение тех или иных научных открытий к определенному периоду, была характерная для пифагорейцев традиция приписывать эти открытия Пифагору. Тем самым, с одной стороны, открытия как бы освящались его именем11, а с другой - эта традиция служила в глазах пифагорейцев препятствием для честолюбивых помыслов, несовместимых со служением истине.


Эти и ряд других обстоятельств затрудняют анализ истории пифагорейства, поэтому до сих пор исследователи не могут разрешить многие важные вопросы, касающиеся философии и математики пифагорейцев. А.О. Маковельский в свое время предложил следующую периодизацию древнего пифагореизма: "Первый период от основания пифагорейского союза в 531 г. до разгрома школы около 500 г. обнимает деятельность самого Пифагора и пифагорейцев VI в.: главы акусматиков Гиппаса, врача Демодока, Петрона, Брентина и других. Второй период - с 500 г. до образования главной системы научного пифагореизма, которая сложилась в середине V в. Главная система слагалась постепенно при сотрудничестве многих лиц... В третий период главная система научного пифагореизма завершается у Филолая, который фиксирует ее в письменной форме и опубликовывает; около того же времени появляется сочинение Иона Хиосского "Триагм". Четвертый период - пифагорейцы в изгнании, последняя треть пятого века. Второй разгром пифагорейской школы имел место, по Эд. Целлеру, в 440-430 гг., оставшиеся в живых пифагорейцы были вынуждены бежать из Италии; в числе этих беженцев называют Филолая, Лисиса, бывшего позже в Фивах учителем Эпаминонда, и других. Пятый период - пифагореизм IV века; сюда относится деятельность преемника Филолая Эврита и его учеников - тех пяти мужей, которых Аристоксен называет "последними пифагорейцами"; это - учитель Аристоксена Ксенофил, Фантон, Эхекрат, Диокл и Полимнаст. На первую половину IV века падает также деятельность Архита Тарентинского, последнего значительного пифагорейца"12 .


Пифагорейцы занимались не одной лишь математикой, к которой в античности относили, кроме арифметики, геометрии и стереометрии, также астрономию, акустику, гармонику (теорию музыки). Среди них были также врачи, как Алкмеон из Кротоны, ботаники, как Менестор из Сибариса, эмпирики-естествоиспытатели, как Гиппон из Самоса; ранние пифагорейцы, в том числе сам Пифагор, Филолай и многие другие, занимались космологией.


В этом смысле ранние пифагорейцы имеют много общего с так называемыми физиками, или натурфилософами-ионийцами: Фалесом, Анаксимандром, Анаксименом, Гераклитом. Но то обстоятельство, что многие из них занимались прежде всего математическими науками, что в центре их внимания было понятие числа и они размышляли о его сущности, оказало в конце концов решающее влияние на развитие философских и научных воззрений школы.


История развития пифагореизма интересна потому, что в разные периоды (с VI по IV в. до н.э.) осмысление природы числа и числовых отношений происходило, видимо, по-разному. В соответствии с этим менялись и развивались также представления о методах математики и науки в целом.


К концу XIX-началу ХХ в. сложилась тенденция резко отделять ранний пифагореизм (VI - первая половина V в. до н.э.) от более позднего (конец V-IV в. до н.э.). При этом аргументация исследователей шла по двум направлениям. Так, немецкий философ В. Виндельбанд отмечал недостаточность достоверных свидетельств о первых пифагорейцах, чего, конечно, не приходится отрицать; исходя из этого, он считал, что рассмотрение учения пифагорейцев следует начинать с работ Филолая. Другой аргумент выдвигали такие исследователи, как В. Дёринг, а позднее Э. Франк. Согласно Дёрингу, первоначально пифагореизм был только религиозно-нравственным учением, в центре которого стоял вопрос о спасении души. Собственно научных, в том числе и математических, изысканий в этот период не было. Только позднее, уже после того, как мистический дух пифагореизма несколько ослабел, в пифагорейской школе возникли научные интересы. Эти интересы, по Дёрингу, вышли на первый план только тогда, когда пифагорейцы отказались от учения о переселении душ и всецело отдались научным исследованиям13 .


Такие же приблизительно аргументы выдвигает и Э. Франк в своем фундаментальном труде "Платон и так называемые пифагорейцы". Насколько важными для дальнейшего развития естествознания, согласно Франку, были математические и астрономические открытия пифагорейцев IV в. до н.э., главным образом Архита и его учеников, настолько же мало можно сообщить о ранних пифагорейцах. Приписываемые Пифагору открытия в области математики, по мнению Франка, были на самом деле сделаны именно в IV в. теми учеными, которых Аристотель именует "так называемыми пифагорейцами"14 . Хотя Франк главным образом ссылается на недостаточно достоверные свидетельства о ранних пифагорейцах, считая, что не только Пифагору, но и Филолаю приписывается многое из открытого "кружком Архита", но, по-видимому, не только эти соображения привели его к мысли так резко отделить два названных этапа15.


Франк стремился показать, что греческая математика и астрономия в IV в. до н.э. уже разработали те методы и сделали те открытия, которые определили собой весь дальнейший путь развития науки. Доказывая этот тезис, Франк хотел по возможности отделить пифагорейскую научную мысль от тех еще донаучных спекуляций, которые, по его мнению, характерны для ранних пифагорейцев.


Отнюдь не оспаривая того факта, что математики-пифагорейцы IV в. значительно отличались от первых представителей пифагорейства, мы в то же время считаем неправомерным заходить в этом разделении слишком далеко16. И не только потому, что это противоречило бы большей части свидетельств, согласно которым принцип "все есть число" разделялся и ранними, и более поздними представителями пифагорейской школы. Важнее другое: именно то обстоятельство, что ранние пифагорейцы воспринимали число как начало устроения - и соответственно познания мира, а в исследовании числовых отношений видели такое же средство спасения души, как и в религиозных ритуалах, - именно это обстоятельство сыграло важную роль в превращении математики в науку, научную систему, какой она не была раньше. После того как математическое знание приобрело строгую форму системы положений, основанных на доказательстве, какими мы их видим в "Началах" Евклида, первые шаги математического мышления, связанные с не вполне ясными мифологическими ассоциациями по поводу числовых отношений, естественно воспринимаются как нечто больше ненужное, как лишний балласт, осложняющий и затемняющий теперь уже выявленное существо дела. Но для историка науки, исследующего процесс рождения математической теории, это выглядит совсем не так однозначно.
1   2   3   4   5   6   7   8   9   ...   33

Похожие:

П. П. Гайденко история греческой философии в ее связи с наукой iconТиповые программы кандидатских экзаменов по специальностиям
Специфика использования педагогической наукой междисциплинарных понятий (личность, деятельность, общение, развитие, формирование)....
П. П. Гайденко история греческой философии в ее связи с наукой iconУчебно-методический комплекс учебной дисциплины «История зарубежной философии (20 век)»
Рассмотрено и утверждено на заседании кафедры истории философии факультета философии и культурологии ргу от 11. 09. 06 (протокол...
П. П. Гайденко история греческой философии в ее связи с наукой iconБертран Рассел История западной философии
«Рассел Б. История западной философии. В 3 кн.: 3 е изд., испр. / Подгот текста В. В. Целищева»: Изд во Новосиб ун та; Новосибирск;...
П. П. Гайденко история греческой философии в ее связи с наукой iconГак магистры-философы история философии
Понимание философии истории в исторической культурологии М. К. Петрова (по работе «Самосознание и научное творчество»)
П. П. Гайденко история греческой философии в ее связи с наукой iconИстория философии: Запад Россия Восток
Главные идеи философии Ф. Бэкона Бэконовский замысел "великого восстановления наук". Препятствия на пути
П. П. Гайденко история греческой философии в ее связи с наукой iconУчебно-методический комплекс учебной дисциплины «История русской философии»
Настоящее пособие – учебно-методический комплекс, рассчитанный на использование при изучении студентами университетов годового курса...
П. П. Гайденко история греческой философии в ее связи с наукой iconУчебно-методический комплекс учебной дисциплины История русской философии
Настоящее пособие – учебно-методический комплекс, рассчитанный на использование при изучении студентами университетов полугодового...
П. П. Гайденко история греческой философии в ее связи с наукой iconВопросы для вступительного экзамена по философии
...
П. П. Гайденко история греческой философии в ее связи с наукой iconПрограмма-минимум кандидатского экзамена по «Истории и философии науки»
Программа ориентирует начинающих лингвистов на творческое усвоение общих методологических проблем, стоящих перед языкознанием как...
П. П. Гайденко история греческой философии в ее связи с наукой iconМотрошилова Н. В. Мифология и пред-философия./История философии. Запад-Россия-Восток. Книга первая. Философия древности и средневековья
Специфика философского знания (объект и предмет филосфии). Соотношение философии и науки
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib2.znate.ru 2012
обратиться к администрации
Библиотека
Главная страница