Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему




Скачать 25,99 Kb.
НазваниеИсследовательская работа обучающейся 9 класса Таныгиной Алены на тему
Дата03.02.2016
Размер25,99 Kb.
ТипИсследовательская работа
Исследовательская работа обучающейся

9 класса Таныгиной Алены на тему:

«Арифметическая и геометрическая прогрессии

в окружающей нас жизни»


Арифметическая и геометрическая

прогрессии в окружающей нас жизни

Аннотация проекта:

В работе дается ответ на вопрос: действительно ли прогрессии играют большую роль в повседневной жизни? Для этого сделан исторический экскурс для установления авторства теории о прогрессиях. Приведены примеры применения прогрессий в различных отраслях хозяйства. Сделан анализ влияния размножения живых организмов в геометрической прогрессии на жизнь на Земле

Актуальность исследования. (почему это важно).

В 9 классе мы изучаем прогрессии: дали определение, научились находить по формулам любой член прогрессии, сумму первых членов прогрессии. Найдя ответы на вопросы: имеет ли это какое - либо практическое значение и как давно люди знают последовательности, как возникло это понятие, мы подтвердим или опровергнем утверждение о том, что математика – наука очень древняя и возникла она из практических нужд человека, что алгебра является частью общечеловеческой культуры.

Проблемный вопрос:

Действительно ли прогрессии играют большую роль в повседневной жизни?

Объект исследования: последовательности: арифметическая и геометрическая прогрессии.

Предмет исследования: практическое применение этих прогрессий

Гипотеза исследования:

На уроках математики мы много раз слышали о том, что математика – наука очень древняя и возникла она из практических нужд человека. Видимо, и прогрессии имеют определенное практическое значение.

Цель исследования:

установить картину возникновения понятия прогрессии и выявить примеры

их применения.

Задачи исследования :

1. Изучить наличие задач на прогрессии с практическим содержанием в различных учебных пособиях.

2. Выяснить:

- когда и в связи с какими потребностями человека появилось понятие последовательности, в частности -прогрессии;

- какие ученые внесли большой вклад в развитие теоретических и практических знаний по изучаемой проблеме.

3. Установить: имеют ли арифметическая и геометрическая прогрессии прикладное значение? Найти примеры применения прогрессий в нашей жизни.

Методы исследования:

  1. Анализ школьных учебников математики.

  2. Анализ школьных учебников математики, математической, справочной литературы, литературы по истории математики, материала из Интернета.

  3. Обобщение найденных фактов в учебниках по биологии и по экологии и в медицинских справочниках.


Арифмети́ческая прогре́ссия

числовая последовательность, в которой каждое последующее число, начиная со второго, получается из предыдущего увеличением его на определённое число.

Имеет вид: a1, a1+d, a1+2d, a1+3d, …, a1+(n-1)d,…

Геометри́ческая прогре́ссия — последовательность чисел, в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число.

Имеет вид: b1, b1q, b1q2, b1q3,… ,b1qn-1,…


Первые теоретические сведения, связанные с прогрессиями, дошли до нас в документах Древней Греции. В Древнем Египте в V в до н.э. греки знали прогрессии и их суммы:

1+2+3+…+n = =2+4+6+…+2n = n·(n+1). Некоторые формулы, относящиеся к прогрессиям, были известны китайским и индийским ученым (V в.) (слайд 11).

Примеры отдельных арифметических и геометрических прогрессий можно встретить еще в древневавилонских и греческих надписях, имеющих возраст около четырех тысячелетий и более. В древней Греции еще пять столетий до н.э. были известны такие суммы:

1+2+3+…+n=½n(n+1);

1+3+5+…+(2n-1)=n2;

2+4+6+…+2n=n(n+1). (слайд 12)

В клинописных табличках вавилонян, как и в египетских папирусах, относящихся ко второму тысячелетию до нашей эры, встречаются примеры арифметических и геометрических прогрессий. Вот пример задачи из египетского папируса Ахмеса: «Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками и, разность же между каждым человеком и его соседом равна меры». В трудах АРХИМЕДА (ок. 287-212 гг. до н.э.) излагаются первые сведения о прогрессиях. (слайд 13, 14, 15)

Пифагор (IV в. до н. э.) и его ученики рассматривали последовательности, связанные с геометрическими фигурами.

Вопросами последовательности занимался Леонардо Пизанский (Фибоначчи). Наиболее известной из сформулированных Фибоначчи задач является "задача о размножении кроликов", которая привела к открытию числовой последовательности 1, 1, 2, 3, 5, 8, 13, ..., именуемой впоследствии "рядом Фибоначчи".

Задача Фибоначчи : Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения (показано в таблице).

Месяцы

0




2

3

4

5

6

7

8

9

10

11

12

Пары

кроликов

0

1

1

2

3

5

8

13

21

34

55

89

144



Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д.

О том, как давно была известна геометрическая прогрессия, свидетельствует знаменитое предание о создании шахмат. Рассказывают, что индийский принц Сирам рассмеялся, услышав, какую награду попросил у него изобретатель шахмат: за первую клетку шахматной доски – одно зерно, за вторую – два, за третью – четыре, за четвертую – восемь и так до 64-го поля. Здесь явная геометрическая прогрессия с первым членом, равным 1, и знаменателем, равным 2.

В Германии молодой Карл Гаусс (1777-1855) нашел моментально сумму всех натуральных чисел от 1 до 100, будучи ещё учеником начальной школы.

1+2+3+4+…+98+99+100 = (1+100)+(2+99)+(3+98)+…+(50+51)=

=101x50 =5050. Это – арифметическая прогрессия.

Задачи на прогрессии, дошедшие до нас из древности, были связаны с запросами хозяйственной жизни: распределение продуктов, деление наследства и другие.

Много старинных задач, дошедших до нас, связанных с прогрессией.

"Задача о семи старухах".

Старухи направляются в Рим, каждая имеет 7 мулов, каждый мул тащит 7 мешков, в каждом мешке находится 7 хлебов, у каждого хлеба лежит 7 ножей, каждый нож нарежет 7 кусков хлеба. Чему равно общее число всего перечисленного? (Решение дано на слайде)

В историческом отношении эта задача интересна тем, что она тождественна с задачей, которая встречалась в папирусе Ринда (Египет), то есть через три тысячи лет после египетских школьников задачу предлагалось разрешить итальянским школьникам.

7, 49, 343, 2401, 16807, 117649

–это геометрическая прогрессия, первый член b1= 7 и знаменатель прогрессии q=7.

bn= b1 q n-1. b6= 7 ·76-1= 7 ·75= 76= 117649.

Sn =(b1(q n -1))/(q-1); S6 = (7(7 6 -1))/(7-1) = (7(117649 -1))/6=

=7 ·117648:6=137256

Еще пример старинных задач, дошедших до нас, которые вы сами можете решить, применив формулы суммы арифметической и геометрической прогрессии:

Шли семь старцев
У каждого старца по семь костылей;
На каждом костыле по семь сучков;
На каждом сучке по семь кошелей;
В каждом кошеле по семь пирогов;
В каждом пироге по семь воробьёв.
Сколько всего воробьёв?

Ответ: 117649 воробьёв

Каждый из 7 человек имеет 7 кошек. Каждая кошка съедает по 7 мышек, каждая мышка за одно лето может уничтожить 7 ячменных колосков, а из зёрен одного колоска может вырасти 7 горстей ячменного зерна. Сколько горстей зерна ежегодно спасается благодаря кошкам?

Ответ: 16807 горстей.

Прогрессии широко встречаются в окружающей нас жизни.

Прогрессии в природе.

Все организмы обладают интенсивностью размножения в геометрической прогрессии. Примеры этих организмов:


ИНФУЗОРИИ… Летом инфузории размножаются бесполым способом делением пополам. Вопрос: сколько будет инфузорий после 15-го размножения?

Ответ: b15 = 2·214 = 32 768 (геометрическая прогрессия)


БАКТЕРИИ… Известно, что бактерии размножаются делением: одна бактерия делится на две; каждая из этих двух в свою очередь тоже делится на две, и получаются четыре бактерии; из этих четырех в результате деления получаются восемь бактерий и т. д. (геометрическая прогрессия). Результат каждого удвоения будем называть поколением. (слайд 39)

Способность к размножению у бактерий настолько велика, что если бы они не гибли от разных причин, а беспрерывно размножались, то за трое суток общая масса потомства одной только бактерии могла бы составить 7500 тонн. Таким громадным количеством бактерий можно было бы заполнить около 375 железнодорожных вагонов. (слайд 40)

Задача №524. [Алгебра. 9 класс, в 2ч. Ч.2. Учебник для общеобразовательных учреждений/ Мордкович А.Г., П.В. Семенов , -М.: Мнемозина, 2010, -224с.(108) ]

Бактерия, попав в живой организм, к концу 20-й минуты делится на две бактерии, каждая из них к концу следующих 20 минут делится опять на две и т.д. Найдите число бактерий, образующихся из одной бактерии к концу суток.

Решение. В сутках 1440 минут, каждые двадцать минут появляется новое поколение - за сутки 72 поколения. По формуле суммы n первых членов геометрической прогрессии, у которой b1=1, q=2, n=72, находим, что S72=272-1= 4 722 366 482 869 645 213 696 - 1=

= 4 722 366 482 869 645 213 695. (слайд 41) Это число читается:

Всего бактерий

4 септиллиона

722 сектиллиона

366 квинтиллионов

482 квадриллионов

869 триллиона

645 миллиарда

709 миллионов

213 тысяча 695 (слайд 42)

Интенсивность размножения бактерий используют… в пищевой

промышленности (для приготовления напитков, кисломолочных продуктов,

при квашении, солении и др.), в фармацевтической промышленности (для создания лекарств, вакцин), в сельском хозяйстве (для приготовления силоса, корма для животных и др.), в коммунальном хозяйстве и природоохранных мероприятиях (для очистки сточных вод,ликвидации

нефтяных пятен) Еще примеры организмов, которые распространяются в геометрической прогрессий:


МУХИ…… “Потомство пары мух съест мёртвую лошадь также скоро как лев”. Карл Линней. Девятое поколение одной пары мух наполнило бы куб, сторона которого равна 140 км, или же составило бы нить, которой можно опоясать земной шар 40 млрд. раз. (примео геометрической прогрессии). (слайд 44)


ОДУВАНЧИК……. “Потомство одного одуванчика за 10 лет может покрыть пространство в 15 раз больше суши земного шара”.

К. А. Тимирязев.

Задачи:

Одно растение одуванчика занимает на земле площадь 1 кв. метр и даёт в год около 100 летучих семян.

а) Сколько кв. км площади покроет всё потомство одной особи одуванчика через 10 лет при условии, если он размножается беспрепятственно по геометрической прогрессии? Ответ: 1012 км2

б) Хватит ли этим растениям на 11-й год места на поверхности суши земного шара?

Ответ: нет, Sсуши = 148 млн км2 (слайды 45-46)


ТЛИ……. Всего за пять поколений, то есть за 1 – 1,5 летних месяцев,

одна единственная тля может оставить более 300 млн. потомков, а за год её потомство способно будет покрыть поверхность земного шара слоем

толщиной почти в 1 метр. (слайд 47)

ВОРОБЬИ…… Потомство пары птиц величиной с воробья при продолжительности жизни в четыре года может покрыть весь земной шар за 35 лет.

Еще две биологические задачи с применением прогрессии: При каждом делении амёбы получается две новые особи. Сколько особей будет после 6 делений? После 10 делений?

Гидра размножается почкованием, причём при каждом делении получается 5 новых особей. Какое количество делений необходимо для получения 625 особей?


Прогрессии в банковских расчетах.

Каждому в жизни приходится решать задачи, связанные с денежными вкладами.

Представьте себе, что вы открыли в банке вклад в сумме а р. Под р% годовых на t лет. У вас есть две стратегии поведения: либо в конце каждого года хранения вклада снимать проценты по вкладу, либо прийти в банк один раз — в конце срока хранения вклада. Kaкой доход вы получите в том и другом случаях?

Чтобы ответить на этот вопрос , вам то же надо решить задачу на геометрическую прогрессию.

Прогрессии строителю: Представьте, что вы – учетчик на стройке. Привезли большое количество бревен строевого леса. Нужно быстро определить, сколько бревен привезли, чтобы закрыть наряд шоферу.

Количество бревен легко подчитывается по формуле суммы арифметической прогрессии с разностью, равной единице, если бревна уложены так, как показано на рисунке. (слайд 55)

Прогрессии в медицине.

[Алгебра. 9 класс, в 2ч. Ч.2. Учебник для общеобразовательных учреждений/ Мордкович А.Г., П.В. Семенов , -М.: Мнемозина, 2010, -224с.(с.100)

Больной принимает лекарство по следующей схеме: в первый день он принимает 5 капель, а в каждый следующий день — на 5 капель больше, чем в предыдущий. Приняв 40 капель, он 3 дня пьет по 40 капель лекарства, а потом ежедневно уменьшает прием на 5 капель, доведя его до 5 капель. Сколько пузырьков лекарства нужно купить больному, если в каждом содержится 20 мл лекарства (что составляет 250 капель)?


Найдя сумму п первых членов арифметической прогрессии, найдете, что вам надо купить 180 капель. Т.е. 2 пузырька лекарства.

Решение. Составим математическую модель задачи:

5, 10, 15,…,40, 40, 40, 35, 30,…,5

ап1+d(n-1),

40=5+5(п-1),

п=8,

Sп=((a1+aп)n)/2, S8 =(5+40)·8:2=180,

180 капель больной принимал по схеме в первый период и столько же по второй период. Всего он принял 180+40+180=400(капель), всего больной выпьет 400:250=1,6 (пузырька). Значит, надо купить 2 пузырька лекарства.

Прогрессии в спорте.

Задача № 468
[Алгебра. 9 класс, в 2ч. Ч.2. Учебник для общеобразовательных учреждений / Мордкович А.Г., П.В. Семенов , -М.: Мнемозина, 2010, -224с.(с.100)]

В соревновании по стрельбе за каждый промах в серии из 25 выстрелов стрелок получал штрафные очки: за первый промах — одно штрафное очко, за каждый последующий — на 0,5 очка больше, чем за предыдущий. Сколько раз попал в цель стрелок, получивший 7 штрафных очков?

Решение. Составим математическую модель задачи. Система штрафных очков составляет арифметическую прогрессию, первый член которой равен 1, а разность – 0,5. Сумма первых n членов ( количество промахов) равно 7. Найдем число промахов - n.

Задача №469.
Задача № 471
[Алгебра. 9 класс, в 2ч. Ч.2. Учебник для общеобразовательных учреждений/ Мордкович А.Г., П.В. Семенов , -М.: Мнемозина, 2010, -224с.(с.100)


Альпинисты в первый день восхождения поднялись на высоту 1400 м, а затем каждый следующий день они проходи ли на 100 м меньше, чем в предыдущий. За сколько дней они покорили высоту в 5000 м?

Решение. Составим математическую модель задачи: 1400, 1300, …, 1400-100(n-1). a1=1400; d=-100, Sn=5000. Надо найти n.

Sn= (2a1+ d (n-1))n:2;

5000= (2·1400-100 · (n-1)) n:2; Условию задачи удовлетворяет

10000= (2800-100 n+100) n; n=4 ( при n=25 аn=-1000, но аn>0)

10000= (2900-100 n) n; Значит, альпинисты покорили

100 n2-2900 n+10000=0; высоту за 4 дня.

n2-29 n+100=0; n=25, n=4. Ответ: за 4 дня.

В каких процессах ещё встречаются
такие закономерности?
Деление ядер урана происходит с помощью нейронов. Нейтрон, ударяя по ядру урана раскалывает его на две части. Получается два нейтрона. Затем два нейтрона, ударяя по двум ядрам, раскалывают их еще на 4 части и т.д. — это геометрическая прогрессия.

  • При повышении температуры в арифметической прогрессии скорость химической реакции вырастает в геометрической прогрессии.

  • Возведение многоэтажного здания — пример арифметической прогрессии. Каждый раз высота здания увеличивается на 3 метра.

  • Вписанные друг в друга правильные треугольники — это геометрическая прогрессия.

  • Денежные вклады под проценты — это пример геометрической последовательности. Зная формулы суммы членов геометрической последовательности, можно подсчитывать сумму на вкладе.

  • Равноускоренное движение — арифметическая прогрессия, т.к. за каждые промежутки времени тело увеличивает скорость в одинаковое число раз.


Допустим, что работники нанялись вырыть вам колодезь с таким условием, чтобы за первый аршин глубины им заплатили 400руб, а за каждый следующий 150-ю рублями больше, чем за предыдущий. Чтобы подсчитать, сколько рублей заплатить, если они вырыли колодец глубиной 16 м, вы применяете формулу суммы п первых членов арифметической прогрессии. (слайд 65)

Задачи на применение прогрессий встречаются в старых учебниках по математике, в книгах по занимательной математике (слайды 66-74).


О поселковых слухах:

Удивительно, как быстро разбегаются по посёлку слухи! Иной раз не пройдет и двух часов со времени какого– нибудь происшествия, которое видели всего несколько человек, а новость уже облетела весь посёлок: все о ней знают, все слышали. Итак, задача:

В поселке 16 000 жителей. Приезжий в 8.00 рассказывает новость трем соседям; каждый из них рассказывает новость уже трем своим соседям и т. д. Во сколько эта новость станет известна половине посёлка?

Если слух распространяется по посёлку и далее таким способом, то есть каждый узнавший эту новость успевает в ближайшие четверть часа передать её трём согражданам, то осведомление посёлка будет происходить по следующему расписанию:

в 9.00 новость узнают 40+27 ·3=121 (человек);

9.15 121+81 ·3 =364 (человек);

9.30 364+243 ·3=1093 (человек);

9.45 1093+729 ·3=3280 (человек);

10.00 3280 + 2187 ·3 =9841(человек).

Эту задачу можно решить по-другому, используя формулу суммы n первых членов геометрической прогрессии.

О финансовых пирамидах.

Разберёмся в механизмах этих организаций. Организатор начинает вовлекать в свою организацию и говорит, что, если внести указанную плату по указанным адресам по 1 рублю, а затем заплатить ещё по 5 таким же адресам, вычеркнув первый адрес и дописав свой последним, то через некоторое время вы получите уйму денег. Хотя желающих разбогатеть по щучьему веленью немало, но в выигрыше оказываются только учредители такой игры.

Решение. Дело в том, что число участников увеличивается в 5 раз с каждым кругом. Если пятёрка устроителей подпишет, допустим, 120 человек со своими адресами, то в первом круге участвуют 120 человек, во втором – 600, в третьем – 3 000, …, в десятом – 234  375  000 человек; это намного больше населения страны. Так что участник, включившийся в восьмом или девятом круге, уже ничего не получит.

Прогрессии в литературе.

Даже в литературе мы встречаемся с математическими понятиями! Так, вспомним строки из"Евгения Онегина".



...Не мог он ямба от хорея,

Как мы не бились отличить...     Ямб - это стихотворный размер с ударением на четных слогах 2; 4; 6; 8... Номера ударных слогов образуют арифметическую прогрессию с первым членом 2 и разностью прогрессии 2.

    Хорей - это стихотворный размер с ударением на нечетных слогах стиха. Номера ударных слогов образуют арифметическую прогрессию 1; 3; 5; 7...пгн

Примеры:

Ямб:

«Мой дЯдя сАмых чЕстных прАвил...»

Прогрессия: 2; 4; 6; 8...

Хорей:.

«Я пропАл, как звЕрь в загОне» Б. Л. Пастернак

Прогрессия: 1; 3 ;5; 7...

«бУря  мглОю  нЕбо  крОет»

прогрессия 1; 3; 5;7. А.С. Пушкин.


Много задач с практическим содержанием на прогрессии в современных учебниках по алгебре.

Выводы:

  • Установили, что сами по себе прогрессии известны так давно, что нельзя говорить о том, кто их открыл.

  • Убедились в том, что задачи на прогрессии, дошедшие до нас из древности, также как и многие другие знания по математике, были связаны с запросами хозяйственной жизни: распределение продуктов, деление наследства и другими.

  • Выяснили, что в развитие теории о прогрессиях внесли ученые Архимед, Пифагор и его ученики, французские математики Леонард Фибоначчи и Баше де Мезириака, немецкие математики М. Штифель, Н. Шюке, и К. Гаусс.

  • Нашли много задач на арифметическую и геометрическую прогрессию в старых и в современных учебниках по математике. Заметили, что арифметическая прогрессия в практических задачах встречается чаще геометрической. Много задач с практическим содержанием в учебнике для 9 класса под редакцией Г.В. Дорофеева [4].

  • Обнаружили, что интенсивное размножение бактерий в геометрической прогрессии широко применяется в пищевой промышленности, в фармакологии, в медицине, в сельском и коммунальном хозяйствах, в банковских расчетах (начисление сложных процентов).


Сделав анализ задач на прогрессии с практическим содержанием мы увидели, что прогрессии встречаются при решении задач в медицине, в строительстве, в банковских расчетах, в живой природе, в спортивных соревнованиях и в других жизненных ситуациях. Следовательно, нам необходим навык применения знаний, связанных с прогрессиями.


Список использованных источников:

  1. Алгебра. 9 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений/ А.Г.Мордкович. – 9-е изд., стер. – М.:Мнемозина, 2007. – 231 с.;

  2. Алгебра. 9 класс. Учебник для общеобразовательных учреждений/ Ю.Н. Макарычев и др. под ред. С.А. Теляковского –М.: Просвещение, 2009 – 271 с.;

  3. Алгебра. 9 класс, : Учебник для общеобразовательных учреждений / Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Феактистов И.Е. . -М.: Мнеозина, 2008, -447с. № 698, 699,702,725,734, 788, 789 (7 задач)

  4. Математика. Алгебра. Функции. Анализ данных.9 кл.: Учебник для общеобразовательных учебных заведений/ Г.В. Дорофеев , С.Б. Суворова, Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева; под ред. Г.В. Дорофеева. -М. :Дрофа, 2000,-352с.;

  5. Пичурин Л.Ф. За страницами учебника алгебры. Книга для учащихся 7-9 классов средней школы -М.: Просвещение, 1990.-224сю;

  6. Энциклопедический словарь юного математика /Сост. А.П.Савин.- М.: Педагогика, 1989.-352с..

  7. http://n-t.ru/tp/iz/zs.htm

  8. http://students.tspu.ru/students/legostaeva/index.php?page=op

  9. http://festival.1september.ru/articles/568100/

Похожие:

Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconИсследовательская работа обучающейся 11 класса, Муравьевой Анжелы, детское объединение мастерская «Сувенир»
Казённое образовательное учреждение дополнительного образования детей «Центр детского творчества» Тарского муниципального района...
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconНаучно-исследовательская работа на тему: «мифопоэтическая символика животных в «записках охотника»
Уважаемые председатель секции, секретарь и участники конференции, вашему вниманию предлагается научно-исследовательская работа на...
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconБековского района пензенской области исследовательская работа на научно-практическую конференцию «Старт в науку» на тему
Исследовательская работа на научно-практическую конференцию «Старт в науку» на тему
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconИсследовательская работа на тему : ученицы 8 класса А
Термин этот связан с греческим словом онома имя. Отрасли ономастики, посвященные изучению отдельных разрядов имён, также имеют свои...
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconНаучно-исследовательская работа на тему: чиновничество в россии
I. формирование чиновничества и его положение в XVIII в
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconИсследовательская работа по математике на тему Работу
В этом году на занятиях элективного курса «Десять встреч с графами» я опять встретился с этой задачей. Оказывается то, что такой...
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconИсследовательская работа на тему: «Народные промыслы России» Работу
«Средняя общеобразовательная школа суглубленным изучением отдельных предметов №52»
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconПрограмма индивидуального развития ребенка
...
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconНаучно-исследовательская работа на тему: «Пищевые добавки»
Моу «Новошимкусская средняя общеобразовательная школа Яльчикского района Чувашской Республики»
Исследовательская работа обучающейся 9 класса Таныгиной Алены на тему iconИсследовательская работа на тему: «Богатыри родного края»
Муниципальное бюджетное образовательное учреждение «Джалильская средняя общеобразовательная школа №2» Сармановского муниципального...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib2.znate.ru 2012
обратиться к администрации
Библиотека
Главная страница