Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72




Скачать 496.56 Kb.
НазваниеИсследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72
страница1/4
Дата21.02.2013
Размер496.56 Kb.
ТипИсследовательская работа
  1   2   3   4
Авторская работа по теме:


«Изучение алгебраического материала в начальной школе»


Выполнила учитель высшей категории Аверьякова Н.Н.

Содержание


Введение.

Глава 1. Общетеоретические аспекты изучения алгебраического материала в начальной школе.

1.1.Опыт введения элементов алгебры в начальной школе.

1.2. Психологические основы введения алгебраических понятий в начальной школе.

1.3. Проблема происхождения алгебраических понятий и её значение для построения учебного предмета.

Глава 2. Методические рекомендации к изучению алгебраического материала в начальной школе.

2.1. Обучение в начальной школе с точки зрения потребностей средней школы.

2.2. Сравнение (противопоставление) понятий на уроках математики.

2.3. Совместное изучение сложения и вычитания, умножения и деления.

Глава 3. Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72.

3.1. Обоснование использования инновационных технологий (технология УДЕ).

3.2. Об опыте ознакомления с алгебраическими понятиями.

3.3.Диагностика результатов обучения математике.

Заключение.

Библиографический список.


Введение


В любой современной системе общего образования математика занимает одно из центральных мест, что несомненно говорит об уникальности этой области знаний.

Что представляет собой современная математика? Зачем она нужна? Эти и подобные вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребёнка и его образовательных потребностей.

Часто говорят, что математика – это язык современной науки. Однако , представляется что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому, что математика к нему не сводится.

Выдающийся отечественный математик А.Н.Колмогоров писал: «Математика не просто один из языков. Математика – это язык плюс рассуждения, это как бы язык и логика вместе. Математика – орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим…Очевидные сложности природы с её странными законами и правилами, каждое из которых допускает очень подробное отдельное объяснение, на самом деле тесно связаны. Однако, если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому.»( с .44 –(12))

Таким образом, математика позволяет сформировать определённые формы мышления, необходимые для изучения окружающего нас мира.

Наша система образования устроена так, что для многих школа даёт единственную возможность приобщиться к математической культуре, овладеть ценностями, заключенными в математике.

Каково же влияние математики вообще и школьной математики в частности на воспитание творческой личности? Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является важнейшим элементом общей культуры. Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Максимально раскрывая возможности человеческого мышления, математика является высшим достижением.

Курс математики(без геометрии) фактически разбит на 3 основные части: на арифметику (1-5классы), алгебру (6-классы), элементы анализа (9-11классы). Каждая эта часть имеет свою особую «технологию». Так, в арифметике она связана, например, с вычислениями, производимыми над многозначными числами, в алгебре- с тождественными преобразованиями, логарифмированием, в анализе- с дифференцированием. Но каковы более глубокие основания, связанные с понятийным содержанием каждой части? Следующий вопрос касается оснований для различения школьной арифметики и алгебры. В арифметику включают изучение натуральных чисел(целых положительных) и дробей (простых и десятичных). Однако специальный анализ показывает, что соединение этих видов чисел в одном школьном предмете неправомерно. Дело в том, что эти числа имеют разные функции: первые связаны со счётом предметов, вторые- с измерением величин. С точки зрения измерения величин, как отмечал А.Н.Колмогоров, «нет столь глубокого различия между рациональными и иррациональными действительными числами. Из педагогических соображений надо задерживаться на рациональных числах, так как их легко записать в форме дробей, однако то употребление, которое им с самого начала придается, должно было бы сразу привести к действительным числам во всей их общности»(12-с.9). Таким образом, есть реальная возможность на базе натуральных (целых) чисел формировать сразу «самое общее понятие числа»(по терминологии А.Лебега), понятие действительного числа. Но со стороны построения программы это означает не более не менее, как ликвидацию арифметики дробей в её школьной интерпретации. Переход от целых чисел к действительным- это переход от арифметики к алгебре, к созданию фундамента для анализа. Эти идеи, высказанные более 30лет назад, актуальны и сегодня. Возможно ли изменение структуры обучения математики в начальной школе в данном направлении? Каковы достоинства и недостатки алгебраизации начального обучения математики? Цель данной работы- попытаться ответить на поставленные вопросы.

Реализация поставленной цели требует решения следующих задач:

-рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа;

-изучение конкретной методики обучения этим понятиям в начальной школе;

-показать практическую применимость рассматриваемых положений в начальной школе на уроках математики в СОУ СОШ №72 учителем Аверьяковой Н.Н.


ГЛАВА 1. ОБЩЕТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА В НАЧАЛЬНОЙ ШКОЛЕ.

    1. ОПЫТ ВВЕДЕНИЯ ЭЛЕМЕНТОВ АЛГЕБРЫ В НАЧАЛЬНОЙ ШКОЛЕ.

Содержание учебного предмета зависит от многих факторов - от требований жизни к знаниям учащихся, от уровня соответствующих наук, от психических и физических возрастных возможностей детей. Правильный учёт этих факторов является существенным условием наиболее эффективного обучения школьников, расширения их познавательных возможностей. Но иногда это условие по ряду причин не соблюдается. Представляется, что в настоящее время программы преподавания некоторых учебных предметов, в т.ч. математики, не соответствуют новым требованиям жизни, уровню современных наук и новым данным возрастной психологии и логики. Это обстоятельство диктует необходимость теоретической и экспериментальной проверки возможных проектов нового содержания учебных предметов. Фундамент математических навыков закладывается в начальной школе. Но, к сожалению, как сами математики, так и методисты и психологи уделяют весьма малое внимание именно содержанию начальной математики. Достаточно сказать, что программа по математике в начальной школе(1-4) в основных своих чертах сложилась еще 50-60 лет назад и отражает, естественно, систему математических, методических и психологических представлений того времени.

Рассмотрим характерные особенности государственного стандарта по математике. Основным её содержанием являются целые числа и действия над ними, изучаемые в определённой последовательности. Наряду с этим программа предполагает изучение метрических мер и мер времени, овладение умением пользоваться ими для измерения, знание некоторых элементов наглядной геометрии - вычерчивание прямоугольника ,квадрата, измерение отрезков, площадей, вычисление объемов. Полученные знания и навыки ученики должны применять к решению задач и выполнению простейших расчетов. На протяжении всего курса решение задач проводится параллельно изучению чисел и действий - для этого отводится половина соответствующего времени. Решение задач помогает учащимся понять конкретный смысл действия, уяснить различные случаи их применения, установить зависимость между величинами, получить элементарные навыки анализа и синтеза. С 1 по 4 класс дети решают следующие основные типы задач(простых и составных): на нахождение суммы и остатка, произведения и частного, на увеличение и уменьшение данных чисел, на разностное и кратное сравнение, на простое тройное правило, на пропорциональное деление, на нахождение неизвестного по двум разностям и другие виды задач. С разными типами зависимостей величин дети сталкиваются при решении задач. Но весьма характерно- ученики приступают к задачам после и по мере изучения чисел; главное, что требуется при решении- это найти числовой ответ. Дети с большим трудом выявляют свойства количественных отношений в конкретных, частных ситуациях, которые принято считать арифметическими задачами. Практика показывает, что манипулирование числами часто заменяет действительный анализ условий задачи с точки зрения зависимостей реальных величин. Задачи, вводимые в учебники, не представляют к тому же системы, в которых более «сложные» ситуации были бы связаны с более «глубокими» пластами количественных отношений. Задачи одной и той же трудности можно встретить и в начале, и в конце учебника. Они меняются от раздела к разделу и от класса к классу по запутанности сюжета(возрастает число действий) , по рангу чисел(от десяти до миллиарда), по сложности физических зависимостей(от задач на распределение до задач на движение) и по другим параметрам. Только один параметр –углубление в систему собственно математических закономерностей -в них проявляется слабо, неотчетливо. Поэтому очень сложно установить критерий математической трудности той или иной задачи. Почему задачи на нахождение неизвестного по двум разностям и на выяснение среднего арифметического труднее задач на разностное и кратное сравнение? Методика не даёт ответа на данный вопрос.

Таким образом, учащиеся начальных классов не получают адекватных, полноценных знаний о зависимостях величин и общих свойствах количества ни при изучении элементов теории чисел, ибо они в школьном курсе связаны по преимуществу с техникой вычислений, ни при решении задач, ибо последние не обладают соответствующей формой и не имеют требуемой системы. Попытки методистов усовершенствовать приёмы преподавания хотя и приводят к частным успехам, однако не меняют общего положения дела, так как они заранее ограничены рамками принятого содержания.

Представляется, что в основе критического анализа принятой программы по арифметике должны лежать следующие положения:

-понятие числа не тождественно понятию о количественной характеристике объектов;

-число не является исходной формой выражения количественных отношений.

Приведём обоснование этих положений. Общеизвестно, что современная математика( в частности, алгебра) изучает такие моменты количественных отношений, которые не имеют числовой оболочки. Также хорошо известно, что некоторые количественные отношения вполне выразимы без чисел и до чисел, например, в отрезках, объёмах и т.д.(отношение «больше», «меньше», «равно»). Изложение исходных математических понятий в современных руководствах осуществляется в такой символике, которая не предполагает обязательного выражения объектов числами. Так, в книге Е.Г.Гонина «Теоретическая арифметика» основные математические объекты с самого начала обозначаются буквами и особыми знаками. Характерно, что те или иные виды чисел и числовые зависимости приводятся лишь как примеры, иллюстрации свойств множеств, а не как их единственно возможная и единственно существующая фора выражения. Примечательно, что многие иллюстрации отдельных математических определений даются в графической форме, через соотношение отрезков, площадей. Все основные свойства множеств и величин можно вывести и обосновать без привлечения числовых систем; более того последние сами получают обоснование на основе общематематических понятий.

В свою очередь многочисленные наблюдения психологов и педагогов показывают, что количественные представления возникают у детей задолго до появления у них знаний о числах и приёмах оперирования ими. Правда, есть тенденция относить эти представления к категории «доматематических образований» (что вполне естественно для традиционных методик, отождествляющих количественную характеристику объекта с числом), однако это не меняет существенной функции в общей ориентировке ребёнка в свойствах вещей. И порой случается, что глубина этих якобы «доматематических образований» более существенна для развития собственно математического мышления ребёнка, чем тонкостей вычислительной техники и умение находить чисто числовые зависимости. Примечательно, что академик А.Н.Колмогоров, характеризуя особенности математического творчества, специально отмечает следующее обстоятельство: «В основе большинства математических открытий лежит какая-либо простая идея: наглядное геометрическое построение, новое элементарное неравенство и т.п. Нужно только применить надлежащим образом эту простую идею к решению задачи, которая с первого взгляда кажется недоступной(12-с.17).

В настоящее время целесообразны самые различные идеи относительно структуры и способов построения новой программы. К работе по её конструированию необходимо привлечь математиков, психологов, логиков, методистов. Но во всех конкретных вариантах она, как представляется, должна удовлетворять следующим требованиям:

-преодолевать существующий разрыв между содержанием математики в начальной и средней школе;

-давать систему знаний об основных закономерностях количественных отношений объективного мира; при этом свойства чисел как особой формы выражения количества, должны стать специальным, но не основным разделом программы;

-прививать детям приёмы математического мышления, а не только навыки вычислений: это предполагает построение такой системы задач, в основе которой лежит углубление в сферу зависимостей реальных величин (связь математики с физикой, химией, биологией и другими науками, изучающими конкретные величины);

-решительно упрощать всю технику вычисления, сводя до минимума ту работу, которую нельзя выполнить без соответствующих таблиц, справочников, других подсобных средств.

Смысл этих требований ясен: в начальной школе возможно преподавать математику как науку о закономерностях количественных отношений, о зависимостях величин; техника вычислений и элементы теории чисел должны стать особым и частным разделом программы. Опыт конструирования новой программы по математике и её экспериментальная проверка, проводимая с конца 1960 года, позволяют уже в настоящее время говорить о возможности введения в школу, начиная с 1 класса систематического курса математики, дающего знания о количественных отношениях и зависимостях величин в алгебраической форме.

1.2.ПСИХОЛОГИЧЕСКИЕ ОСНОАВ ВВЕДЕНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ В НАЧАЛЬНОЙ ШКОЛЕ.

В последнее время при модернизации программ особое значение придают подведению теоретико-множественного фундамента под школьный курс (эта тенденция проявляется и у нас, и за рубежом). Реализация этой тенденции в преподавании (особенно в начальных классах, как это наблюдается, например , в американской школе неизбежно поставит ряд трудных вопросов перед детской и педагогической психологий и перед дидактикой, ибо сейчас почти нет исследований, раскрывающих особенности усвоения ребенком смысла множества ( в отличие от усвоения счета и числа, которое исследовалось весьма многосторонне).

Логические и психологические исследования последних лет (в особенности работы Ж.Пиаже) вскрыли связь некоторых механизмов детского мышления с общематематическими понятиями. Ниже специально рассматриваются особенности этой связи и их значение для построения математики как учебного предмета (при этом речь идет о теоретической стороне дела, а не о каком-либо частном варианте программы).

Натуральное число является фундаментальным понятием математики на протяжении её истории; весьма существенную роль оно играет во всех областях производства, техники, повседневной жизни. Это позволяет математикам- теоретикам отводить ему особое место среди других понятий математики. В разной форме высказываются положения о том, что понятие натурального числа - исходная ступень математической абстракции, что оно является основой для построения большинства математических дисциплин.

Выбор начальных элементов математики как учебного предмета по существу реализует эти общие положения. При этом предполагается, что знакомясь с числом, ребёнок одновременно раскрывает для себя исходные особенности количественных отношений. Счёт и число- основа всего последующего усвоения математики в школе.

Однако есть основания полагать, что эти положения, справедливо выделяя особое и фундаментальное значение числа, вместе с тем неадекватно выражают его связь с другими математическими понятиями, неточно оценивают место и роль числа в процессе усвоения математики. Из-за этого обстоятельства, в частности проистекают некоторые существенные недостатки принятых программ, методик и учебников по математике. Необходимо специально рассмотреть действительную связь понятия о числе с другими понятиями.

Многие общематематические понятия , и в частности понятия соотношения эквивалентности и порядка, систематически рассматриваются в математике независимо от числовой формы. Эти понятия не теряют своего независимого характера на их основе можно описывать и изучать частный предмет - разнее числовые системы, понятия, о которых сами по себе не покрывают смысла и значения исходных определений. Причём в истории математической науки общие понятия развивались именно в той мере, в какой «алгебраические операции», известный пример которых доставляют четыре действия арифметики, стали применяться к элементам совершенно не «числового» характера.

В последнее время делаются попытки развернуть в преподавании этап введения ребёнка в математику. Эта тенденция находит своё выражение в методических руководствах, а также в некоторых экспериментальных учебниках. Так в одном американском учебнике, предназначенном для обучения детей 6-7лет, на первых страницах вводятся задания и упражнения, специально тренирующие детей в установлении тождественности предметных групп. Детям показывается приём соединения множеств,- при этом вводится соответствующая математическая символика. Работа с числами опирается на элементарные сведения о множествах. Можно по-разному оценивать содержание конкретных попыток реализации этой тенденции, но сама она вполне правомерна и перспективна.

На первый взгляд понятия «отношение», «структура», «законы композиции» и другие имеющиеся сложные математические определения, не могут быть связаны с формированием математических представлений у маленьких детей. Конечно, весь подлинный и отвлечённый смысл этих понятий и их место в аксиоматическом построении математики как науки есть объект усвоения уже хорошо развитой и «натренированной» в математике головы. Однако некоторые свойства вещей, фиксируемые этими понятиями, так или иначе проступают для ребёнка уже сравнительно рано: на это имеются конкретные психологические данные.

Прежде всего следует иметь в виду, что от момента рождения до 7-10 лет у ребёнка возникают и формируются сложнейшие системы общих представлений об окружающем мире и закладывается фундамент содержательно- предметного мышления. Причём на сравнительно узком эмпирическом материале дети выделяют общие схемы ориентации в пространственно- временных и причинно- следственных зависимостях вещей. Эти схемы служат своеобразным каркасом той «системы координат», внутри которой ребёнок начинает всё глубже овладевать разными свойствами многообразного мира. Конечно, эти общие схемы мало осознаны, и в малой степени могут быть выражены самим ребёнком в форме отвлечённого суждения. Они, говоря образно, являются интуитивной формой организации поведения ребёнка (хотя, конечно, всё более и более отображаются и в суждениях).

В последние десятилетия особенно интенсивно вопросы формирования интеллекта детей и возникновения у них общих представлений о действительности, времени и пространстве изучались известным швейцарским психологом Ж.Пиаже и его сотрудниками. Некоторые его работы имеют прямое отношение к проблемам развития математического мышления ребёнка, и поэтому нам важно рассмотреть их применительно к вопросам конструирования учебной программы.

В одной из своих последних книг(17) Ж.Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до 12-14лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения (например А+А1=В) и операции , ей обратной (В- А1=А). сериация- это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих).

Анализируя становление классификации, Ж.Пиаже показывает, как от исходной формы, от создания «фигурной совокупности», основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства («нефигурные совокупности»), а затем к самой сложной форме- к включению классов, обусловленному связью между объёмом и содержанием понятия. Автор специально рассматривает вопрос о формировании классификации не только по одному, но и по двум- трём признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов.

Эти исследования преследовали вполне определённую цель- выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способность ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда «операции и действия могут развертываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto ( в силу самого факта) понимание другого(17-стр.15).

Обратимость, согласно Ж.Пиаже, представляет фундаментальный закон композиции, свойственный уму. Она имеет две взаимодополняющие и несводимые формы: обращение (инверсия или отрицание) и взаимность. Обращение имеет место, например, в том случае, когда пространственное перемещение предмета из А в В можно аннулировать, переводя обратно предмет из В в А, что в итоге эквивалентно нулевому преобразованию (произведение операции на обратную есть тождественная операция, или нулевое преобразование).

Взаимность (или компенсация) предполагает тот случай, когда, например, при перемещении предмета из А в В предмет так и остаётся в В, но ребенок сам перемещается из А в В и воспроизводит начальное положение, когда предмет находился против его тела. Движение предмета здесь не аннулировано, но оно компенсировалось путём соответствующего перемещения собственного тела - и это уже другая форма преобразования, нежели обращение (17-стр.16). Ж.Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребёнка (особенно тех логических операций, которые осуществляет в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими(17-стр.17). так алгебраическая структура («группа») соответствует операторным механизмам ума, подчиняющимся одной из форм обратимости- инверсии(отрицанию). Группа имеет четыре элементарных свойства: произведению двух элементов группы также даёт элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:

-координация двух систем действия составляет новую схему, присоединяемую к предыдущим;

-операция может развиваться в двух направлениях;

-при возвращении к исходной точке мы находим её неизменной;

-к одной и той же точке можно прийти разными путями, причём сама точка считается неизменной.

Рассмотрим основные положения, сформулированные Ж.Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж.Пиаже показывают, сто в период дошкольного и школьного детства у ребёнка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их положений. Причём уже на стадии конкретных операций ( с 7-лет) интеллект ребёнка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики. Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и ёмкого характера тех стадий умственного развития ребёнка, которые связаны с периодом от 2 до 7 и от 7 до 11лет. Рассмотрение результатов, полученных Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего фактические данные о формировании интеллекта ребёнка с 2х до 11лет говорят о том, что ему в это время не только не «чужды» свойства объектов, описываемые посредством математических понятий «структура- отношение», но они сами органически входят в мышление ребёнка.

Традиционные программы не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, таящихся в процессе интеллектуального развития ребенка. К 7- годам у детей уже в достаточной мере развит план мыслительных действий, и путём обучения по соответствующей программе, в которой свойства математических структур даны «явно» и детям даются средства их анализа, можно быстрее подвести детей к уровню «формальных» операций, чем в те сроки, в которые это осуществляется при «самостоятельном» открытии этих свойств. При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж.Пиаже к 7-11годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе.

Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь структур детского мышления и общеалгебраических структур. Наличие этой связи открывает принципиальные возможности для построения учебного предмета, развёртывающегося по схеме «от простых структур- к сложным сочетаниям». Указанный способ может быть мощным рычагом формирования у детей такого мышления, которое опирается на достаточно прочный понятийный фундамент.

1.3.ПРОБЛЕМА ПРОИСХОЖДЕНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ И ЕЁ ЗНАЧЕНИЕ ДЛЯ ПОСТРОЕНИЯ УЧЕБНОГО ПРЕДМЕТА.

Разделение школьного курса математики на алгебру и арифметику условное. Переход происходит постепенно. Одним из центральных понятий начального курса является понятие натурального числа. Оно трактуется как количественная характеристика класса эквивалентных множеств. Раскрывается понятие на конкретной основе в результате оперирования множества и измерения величин. Необходимо проанализировать содержание понятия «величина». Правда, с этим термином связывается другой - «измерение». В общем употреблении термин величина связан с понятиями «равно», «больше», «меньше», которые описывают самые различные качества. Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А иВ, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А В, А В.

В.Ф.Коган выделяет следующие восемь основных свойств понятий «равно», «больше», «меньше».

1) имеет место по крайней мере одно из соотношений: А=В, А В, А В;

2) если имеет место соотношение А=В, т не имеет места соотношение А В;

3) если имеет место А=В, то не имеет места соотношение А В;

4) если А=В и В=С, то А=С;

5) если А В и В С, то А С;

6) если А С и В С , то А С;

7) равенство есть отношение обратимое: А=В В=А;

8) равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.

«Устанавливая критерии сравнения, мы претворяем множество в величину»,- писал В.Ф.Коган. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины». Так возникают понятия «объём» , «вес», «длина» и т.д. «При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения»,- отмечал В.Ф.Коган.

В качестве важнейшего примера математической величины этот автор рассматривает натуральный ряд чисел. С точки зрения такого критерия сравнения, как положение, занимаемое числами в ряду (занимает одно место, следует за…, предшествует…), этот ряд удовлетворяет постулатам и поэтому представляет собой величину. Работая с величинами(отдельные из значения целесообразно фиксировать буквами), можно производить сложную систему преобразований, устанавливая зависимость их свойств, переходя от равенства к неравенству, выполняя сложение и вычитание. Натуральные и действительные числа одинаково прочно связаны с величинами и некоторыми их существенными особенностями. Нельзя ли эти и другие свойства сделать предметом специального изучения ребёнка ещё до того, как вводится числовая форма описания отношения величин? Они могут послужить предпосылками для последующего развёрнутого введения числа и его разных видов, в частности для пропедевтики дробей, понятий координат, функции и других понятий уже в младших классах. Что может быть содержанием этого начального раздела? Это знакомство с физическими объектами, критериями их сравнения, выделяющими величину как предмет математического рассмотрения, знакомство со способами сравнения и знаковыми средствами фиксации его результатов, с приёмами анализа общих свойств величин. Необходим такой начальный раздел курса, который знакомил бы детей с основными алгебраическими понятиями( до введения числа). Каковы же основные узловые темы такой программы?

Тема 1. Уравнивание и комплектование объектов (по длине, объёму, весу, составу частей и других параметрам).

Тема 2. Сравнение объектов и фиксация его результатов формулой равенства- неравенства.

-задачи на сравнение объектов и знаковое обозначение результатов этого действия;

-словесная фиксация результатов сравнения (термины «больше», «меньше», «равно»).

Письменные знаки

-обозначение результатов сравнения рисунком;

-обозначение сравниваемых объектов буквами.

Тема 3. Свойства равенства и неравенства.

Тема 4. Операция сложения (вычитания).

Тема 5. Переход от неравенства типа А В к равенству через операцию сложения( вычитания).

Тема 6. Сложение- вычитание равенств – неравенств.

При правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий этот материал может быть полноценно усвоен за три месяца.

Далее дети знакомятся со способами получения числа, выражающим отношение какого- либо объекта как целого и его части. Есть линия, реализуемая уже в 1 классе - перенесение на числа (целые) основных свойств величины и операции сложения. В частности, работая на числовом луче, дети могут быстро претворить последовательность чисел в величину. Таким образом, обращение с числовым рядом как с величиной позволяет по-новому формировать сами навыки сложения и вычитания, и затем умножения - деления.


  1   2   3   4

Похожие:

Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconРеферат на тему «Коррекционное обучение на уроках математики в начальных классах коррекционной школы VIII вида»
«Коррекционное обучение на уроках математики в начальных классах коррекционной школы VIII вида»
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconУроках математики в начальной школе
В связи с этим много вопросов связано с использованием на уроках занимательного материала. И среди них особое значение уделяется...
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconНа уроках русского языка и математики в 1-12 классах
Ведение тетрадей по русскому языку учащимися школы с 1-ого по 12–й класс является обязательным
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconОтчет по теме «словарная работа на уроках русского языка в начальных классах»
Вот почему работа над словом при обучении русскому языку является актуальной и заслуживает не меньшего к себе внимания, чем чисто...
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconВ. З. Денискина коррекционная направленность уроков математики в начальных классах школ для детей с нарушением зрения
Денискина В. З. Коррекционная направленность уроков математики в начальных классах школ для детей с нарушением зрения: Методические...
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconИсследовательская работа по изучению комплекса экологических факторов с элементами прогнозирования, для обучающихся среднего и старшего школьного возраста Практическая работа по изучению свойств,
Дополнительное учебно-методическое и материально-техническое обеспечение исследовательской деятельности обучающихся
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconПрактическая работа над проектом начинается на стадии “Закрепления материала” и “Повторение”, на уроках обобщения и становится гармоничной частью единого процесса обучения
«Проектная деятельность как фактор развития лексико – грамматических навыков и творческого мышления учащихся в процессе изучения...
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconИсследовательская работа учащихся на уроках русского языка и литературы Понятия «самостоятельность»
Самостоятельная, творческая, учебно-исследовательская работа учащихся на уроках русского языка и литературы
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconУроках математики в 5-6 классах
Ить образовательный процесс, отвечающий требованиям современного информационного общества. В «Концепции модернизации российского...
Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72 iconПедагогики курсовая работа работа над речью слабослышащих учащихся на уроках развития речи в младших классах
Работа над речью слабослышащих учащихся на уроках развития речи в младших классах
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib2.znate.ru 2012
обратиться к администрации
Библиотека
Главная страница