Научно-исследовательская работа «методы решения логических задач»




Скачать 37.82 Kb.
НазваниеНаучно-исследовательская работа «методы решения логических задач»
Дата03.02.2016
Размер37.82 Kb.
ТипНаучно-исследовательская работа
МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

КУВИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

КУДЫМКАРСКОГО РАЙОНА, ПЕРМСКОГО КРАЯ


НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА




«МЕТОДЫ РЕШЕНИЯ ЛОГИЧЕСКИХ ЗАДАЧ»




Работу выполнила

ученица 7-ого класса

Трошева Наталья.


Учитель:

Копытова Н.Г..


с. Кува, 2008 г.

СОДЕРЖАНИЕ



I. Введение. Стр.3.
II. Основная часть.




    1. Метод конструирования задач.

Стр. 3-5

    1. Логические тесты:

1) словесные тесты:

а) анаграммы;

Стр. 5

б) вербальные тесты;

Стр. 6

  1. символико-графические тесты;

Стр. 6-7

  1. комбинированные тесты.

Стр. 7-9

    1. Метод рассуждений.

Стр. 9-10

    1. Метод описания предметов и их форм.

Стр. 10-12

    1. Метод поиска родственных задач.

Стр. 12-13

    1. Метод «причёсывания задач».

Стр. 13-14

    1. Метод «доказательство от противного».

Стр. 14

    1. Метод «чётно-нечётно».

Стр. 14-15

    1. Обратный ход.

Стр. 15-16

    1. Метод таблиц.

Стр. 16-18

    1. Метод граф.

Стр. 18-19

    1. Метод кругов Эйлера.

Стр. 20

    1. Комбинированный метод.

Стр. 21

III.Заключение


IV. Библиографический список.

Стр. 22

ВВЕДЕНИЕ


«…Информация заливает нас. Но как бороться с этим половодьем? Единственный путь – не запоминать всё, что течёт в этом потоке, а логически упрощать. Мне трудно разговаривать с человеком, когда я вижу, что у него нет элементарной логической культуры. Логика нужна любому специалисту, будь он математик, медик или биолог. Логика – это необходимый инструмент, освобождающий от лишних, ненужных запоминаний, помогающий найти в массе информации то ценное, что нужно человеку. Без логики – это слепая работа».

(П. Анохин)


В течение всех лет обучения в школе мы много решаем разнообразных задач, в том числе и логических: задачи занимательного характера, головоломки, анаграммы, ребусы и т.п. Чтобы успешно решать задачи такого вида, надо уметь выделять их общие признаки, подмечать закономерности, выдвигать гипотезы, проверять их, строить цепочки рассуждений, делать выводы. Логические задачи от обычных отличаются тем, что не требуют вычислений, а решаются с помощью рассуждений. Можно сказать, что логическая задача – это особая информация, которую не только нужно обработать в соответствии с заданным условием, но и хочется это сделать. Особое место в математике занимают задачи, решение которых развивает логическое мышление, что способствует успешному изучению предмета. Эти задачи носят занимательный характер и не требуют большого запаса математических знаний, поэтому они привлекают даже тех учащихся, которые не очень любят математику.



  1. Основная часть.

1. Алгоритм решения логических задач

Решение многих логических задач связано с рассмотрением нескольких конечных множеств с одинаковым числом элементов, между которыми требуется установить соответствие. При решении таких задач удобно использовать различные таблицы и графики.


При составлении и решении логических задач мы используем следующий алгоритм:

    1. Определение содержания текста (выбор объектов или субъектов).

    2. Составление полной информации о происшедшем событии.

    3. Формирование задачи с помощью исключения части информации или её искажения.

    4. Произвольное формулирование задачи. В случае необходимости (недостаток информации, искажение и т.д.) вводится дополнительное логическое условие.

    5. Проверка возможности решения с помощью рассуждений. Получение единственного непротиворечивого ответа означает, что условие составлено, верно. Если нет, то необходимо обратиться к дополнительному п.6.

    6. В составленном условии не хватает информации, либо имеющаяся информация противоречиво искажена. Изменяем или дополняем условие задачи, после чего необходимо обратиться к п.5.


Использования данного алгоритма при конструировании задачи.

  1. Субъекты: мальчики Ваня, Петя, Коля.

  2. Исходная информация: у Коли больше всех грибов.

  3. Для составления задачи искажаем информацию. Делаем её логически противоречивой.

Известны сообщения мальчиков:

  • Ваня говорит, что больше всего грибов собрал Петя;

  • Петя говорит, что больше всего грибов собрал Коля;

  • Коля говорит, что больше всего грибов собрал Ваня.

  1. Записываем условие задачи:

«Мальчики собирали в лесу грибы. Ваня подсчитал, что больше всего грибов собрал Петя. Петя подсчитал, что больше грибов у Коли. Коля сообщил после своего подсчёта, что больше всех собрал грибов Ваня. Кто из мальчиков больше всех собрал грибов, если известно, что только один из них опередил всех и известно, что один из мальчиков сообщил верные сведения, а двое других сказали неправду?»

  1. Рассмотрев три варианта, нетрудно установить, что решение найти невозможно. Переходим к следующему действию алгоритма.

  2. Уточняем информацию. Во-первых, допускаем, что

лгут все мальчики,

и, во-вторых, дополнительно изменяем сообщение Пети:

«У Коли меньше всего грибов».

Решение задачи становится очевидным.


Для развития памяти, обобщения полученных знаний интересны логические тесты. Для решения математических тестов кроме знаний из школьной математики необходимо умение наблюдать, сравнивать, обобщать, проводить аналогии, делать выводы и обосновывать их. В основном, тесты представляют собой задания творческого характера, способствующие развитию логического мышления.

Логические тесты подразделяются на три основные группы:

  • словесные

  • символико-графические

  • комбинированные

К первой группе относятся математические анаграммы и вербальные тесты.

Анаграммой называется слово, в котором поменяли местами все или несколько букв по сравнению с исходным словом. Решить анаграмму – означает определить исходное слово.

Примеры.

1. Решить анаграммы и исключить лишнее слово:

мапряя; чул; резоток; рипетрем.

Упражнение состоит из двух частей:

1) решить анаграммы (прямая; луч; отрезок; периметр);

2) исключить лишнее слово, т.е. определить логическую закономерность, лежащую в основе подбора этих терминов, и, исходя из неё, исключить логически несовместимое слово.

В нашем случае лишним словом будет «периметр» - метрическая (скалярная) величина. «Прямая», «луч», «отрезок» - геометрические фигуры.

Таким образом, устанавливается и математическая терминология, и развивается логическое мышление.

Вербальный тест – это задание типа:

вставьте пропущенное слово

числитель (тело) число

дробь (?) знаменатель

Задание состоит из двух частей. В первой части дано решенное упражнение: из двух слов «числитель» и «число» выделено новое слово «тело». Задача решающего – найти логический признак, по которому было составлено это слово. Применив аналогию, при исследовании второй части вставим пропущенное слово «роль». После этого можно ответить на вопрос «Как логически взаимосвязаны математические термины, представленные в этом задании?»

Мир символико-графических логических тестов очень разнообразен и богат. Задания представляют собой эффективный способ взаимосвязи алгебраического материала с изображением математических фигур.

  1. Вставьте необходимую фигуру:




400


? 100


Логические тесты дают возможность повторить разные понятия, свойства, правила и т.п. Каждое логическое математическое задание содержит некоторый математический «секрет». Найти его – основная задача решающего. При решении важно находить закономерности (правила), по которым составлена первая часть задачи, и, применяя метод аналогии, решить вторую часть задачи.

Примеры.

  1. Найти закономерность и исключить лишний элемент

а) {15; 60; 35; 12; 40; 120}

б) {задача; переменная; уравнение; функция}

  1. Реши анаграммы:

асонс; лосок; ракаск; редас; сенав

  1. Восстанови цепочку слов: конец первого слова служит началом второго:

логи (…) талог; чере (…) олад;

высо (…) ра; брут (…) чка


К комбинированным логическим тестам относятся задания, содержащие как вербальную версию, так и символико-графическую. Такие упражнения требуют не только наблюдательности, умения сравнивать, обобщать, делать выводы и обосновывать их, но и умения устанавливать необычные связи между объектами, проводить аналогии.

Пример. Вставьте пропущенное слово

математика 3≤x≤6 тема

дециметр 5≤x≤8 ?

Проанализировав первую часть, придём к выводу, что, взяв буквы с третьей по шестую, мы получим слово «тема». Аналогично, взяв буквы с пятой по восьмую, получим слово «метр».

Комбинированные логические тесты могут быть очень разнообразными.

Примеры.

  1. Запиши недостающее слово:

сантиметр – миллиметр; гектар - ?

  1. В одном классе 27 учеников. Можно ли утверждать, что в этом классе найдутся хотя бы два ученика, фамилии которых начинаются с одной и той же буквы?

  2. Составьте пропущенный рисунок и впишите нужное число.




Одна бабушка бабушка

Две матери мать

Три дочери дочь дочь


- - - - - - - - - - - - - - - - - - - - - - - - - - -

4

Одна бабушка

Две матери ?

Две дочери

- - - - - - - - - - - - - - - - - - - - - - - - - -

3

Данную задачу можно усложнить. Рассмотрим способ решения более сложной задачи.

Бабушка

мать

дочь дочь

- - - - - - - - - - - - - - - - - - - - - - - - -

1,2,3 4


?


- - - - - - - - - - - - - - - - - - - - - - - -

1,2,3 3


В первом прямоугольнике числа 1,2,3 и 4 связаны по схеме; отсюда делаем вывод: одна бабушка, две матери, три дочери; всего в данной семье 4 женщины.

Рассуждая аналогично по данным второго прямоугольника, приходим к схеме:

Бабушка

Мать

Дочь

В роли матери выступают две женщины: бабушка, мать, в роли дочери – две женщины: мать и дочь, а всего в этой семье 3 женщины.

Для раскрытия причинной связи между явлениями окружающей действительности можно предложить следующие логические задания.

4. Из слов: понедельник, вторник, среда, четверг, пятница, суббота, воскресенье выберите нужные слова:

было вчера вчера вторник

есть ? Или сегодня ? Или: 3 среда

будет ? завтра ? 5 ?

5.Вставьте пропущенное равенство:

3 + 1 = 4

4 + 1 = 5

5 – 1 = 4

4 – 1 = 3







3 + 2 = 5

?

  1. Обозначьте буквами русского алфавита углы второго квадрата:

А Б ? ?

1

2




4

3

4

3




1

2

Г В ? ?


Логика помогает усваивать знания осознанно, с пониманием, т.е. не формально; создаёт возможность лучшего взаимопонимания. Логика – это искусство рассуждать, умение делать правильные выводы. Это не всегда легко, потому что очень часто необходимая информация «замаскирована», представлена неявно, и надо уметь её извлечь.

  1. Текстовые логические задачи можно условно разделить на следующие виды:

    1. все высказывания истинны;

    2. не все высказывания истинны;

    3. задачи о правдолюбцах и лжецах.

Желательно отрабатывать решение каждого вида задач постепенно, поэтапно.


  1. Основные методы решения задач

Метод рассуждений

В методике рассуждений при решении помогают: схемы, чертежи, краткие записи, умение выбирать информацию, умение пользоваться правилом перебора.


Примеры.

  1. Лена, Оля, Таня участвовали в беге на 100 м. Лена прибежала на 2 с раньше Оли, Оля прибежала на 1 с позже Тани. Кто прибежал раньше: Таня или Лена и на сколько секунд?

Решение.

Составим схему:


Лена __________

Оля __________ __ __

1с 1с

Таня __________ __



Ответ. Раньше на 1с пришла Лена.

  1. Любое натуральное число от 1 до 10 можно записать:

а) четырьмя тройками;

б) четырьмя четвёрками;

использую при этом любые математические знаки.

Ответ: а) 33 : 33 = 1 б) 44 : 44 = 1

3 : 3 + 3 : 3 = 2 4 : 4 + 4 : 4 = 2

3 · 3 – 3 – 3 = 3 (4 + 4 + 4) : 4 = 3

3 (4 – 4) · 4 + 4 = 4

(3 : 3) + 3 = 4 4

3 + 3 – 3 : 3 = 5 (4 : 4) + 4 = 5

3 + 3 + 3 – 3 = 6 (4 + 4) : 4 + 4 = 6

3 + 3 + 3 : 3 = 7 44 : 4 – 4 = 7

3 · 3 – 3 : 3 = 8 4 · 4 – 4 – 4 = 8

3 · 3 + 3 – 3 = 9 4 : 4 + 4 + 4 = 9

3 · 3 + 3 : 3 = 10 (44 – 4) : 4 = 10


Метод описания предметов и их форм

Приходилось ли вам договариваться о встрече в каком-нибудь установленном месте. Например, около автовокзала с человеком, которого вы никогда раньше не видели? Как узнать незнакомца, выделить его из многих других людей? Конечно, по его признакам. Например, он может сказать, что у него светлые волосы, голубые глаза, высокий рост, чёрная куртка, джинсовые брюки, белые кроссовки. Чтобы наверняка не ошибиться, можно попросить его держать в руках газету или журнал. Все эти признаки вместе взятые составляют описание внешности человека. По этому описанию вы можете его узнать, т.е. догадаться, что перед вами тот самый человек, который вам нужен.

По описанию можно представить себе предмет, место или событие, которое вам никогда не доводилось видеть, Например, мамонта, Южный полюс или извержение вулкана.

По приметам (признакам) преступника составляют его предполагаемый портрет – фоторобот.

По признакам (симптомам) болезни врач ставит диагноз, т.е. распознаёт болезнь.

Разгадывание многих загадок, шарад, решение кроссвордов основано на узнавании объекта по описанию.

Примеры.

  1. Вот два описания одного и того же времени года.

«Похолодание, осадки в виде дождя и снега. Изменение окраски листьев и листопад у растений. Отлёт птиц».

(Из учебника «Природоведение»)

«Роняет лес багряный свой убор,

Сребрит мороз увянувшее поле,

Проглянет день, как будто поневоле,

И скроется за край окружных гор».

(А.С.Пушкин)

О каком времени идёт речь? Как об этом можно догадаться?

  1. Нарисуй фигуру по её описанию:

а) четырёхугольник с равными сторонами и равными углами;

б) многоугольник, у которого три стороны.

Как называется каждая из этих фигур?

  1. Запиши двузначное число, которое делится на 4 и кончается цифрой 6. Сколько таких чисел?

  2. Возможно ли такое:

а) он – мой дед, но я ему не внук;

б) у моей сестры есть брат, а у меня нет брата?

  1. Что это за предмет: чаще всего деревянный, называют иногда журнальным?


Метод поиска родственных задач

Если задача трудна, то необходимо попытаться найти и решить более простую «родственную» задачу. Это даёт ключ к решению исходной задачи. При этом полезно:

а) рассмотреть частный (более простой) случай, а затем обобщить идею решения;

б) разбить задачу на подзадачи;

в) обобщить задачу (например, заменить конкретное число переменной),

г) свести задачу к более простой.

Примеры.

1. В угловой клетке таблицы 5Х5 стоит плюс, а в остальных клетках стоят минусы. Разрешается в любой строке или любом столбце поменять все знаки на противоположные. Можно ли за несколько таких операций сделать все знаки плюсами?

Решение. Возьмём квадрат 2Х2 (один плюс и три минуса). Можно ли сделать все знаки плюсами? Нельзя! Воспользуемся этим результатом: выделим в квадрате 5Х5 квадратик 2Х2, содержащий один плюс. Про него уже известно, что сделать все знаки плюсами невозможно. Значит, в квадрате 5Х5 и подавно этого сделать нельзя.

  1. Сколько существует трёхзначных чисел?

Ответ: 900

  1. Яблоко стоит п рублей и ещё пол-яблока. Сколько стоят т яблок?


Метод «причёсывания задач» (или «можно считать, что…»)

Можно решать задачу, как придётся, а можно предварительно преобразовать её к удобному для решения виду: переформулировать условие на более удобном языке (например, на языке чертежа), отбросить простые случаи, свести общий случай к частному. Такие преобразования сопровождаются фразами: «в силу чётности», «явно не хуже», «для определённости», «не нарушая общности», «можно считать, что…»

Примеры.

  1. Каждый ученик класса ходил хотя бы в один из двух походов. В каждом походе мальчиков было не больше 2/5. докажите, что всего мальчиков в классе не больше 4/7.


Решение. Решение «в лоб» состоит в рассмотрении количества мальчиков, ходивших только в первый поход, ходивших только во второй поход, ходивших в оба похода, то же для девочек, что ведёт к составлению нескольких уравнений. Поэтому избавимся от лишних неизвестных. Сводя задачу к частному случаю. Проделаем это в несколько шагов. После каждого шага упрощения становится очевидным следующий шаг.

Будем увеличивать число мальчиков в классе, не изменяя числа девочек и не нарушая условия задачи.

1-ый шаг. «Впишем» всех девочек в число участников обоих походов. От этого доля мальчиков в классе не изменится, а в походах уменьшится. Итак, можно считать, что все девочки ходили в оба похода.

2-ой шаг. Если мальчик ходил в первый поход, то освободим его от посещения второго. Доля мальчиков в походе уменьшится. Итак, можно считать, что каждый мальчик ходил только в один поход.

3-ий шаг. Если в одном походе было меньше мальчиков, чем в другом, то добавим в класс мальчиков. Доля мальчиков в походах не уменьшится, она останется не больше 2/5, а доля мальчиков в классе увеличится. Можно считать, что мальчиков в походах поровну.

4-ый шаг. Задача стала следующей: в обоих походах были все девочки и ровно половина мальчиков. Обозначим число девочек через 3х, тогда мальчиков в походах было не больше 2х, а во всём классе – не больше 4х. Максимальное число мальчиков в классе 4х, а это 4/7 класса.


Метод «доказательство от «противного»»

Рассуждают примерно так: «Допустим, исходное утверждение неверно. Если из этого получим противоречие, то исходное утверждение верно».

Примеры.

1. Существует ли самое большое число?

Решение. Допустим, что существует. Тогда прибавим к этому числу единицу и получим ещё большее число. Противоречие. Значит, сделанное предположение неверно, и такого числа не существует.

  1. Есть ли самое маленькое число?


Метод «чётно-нечётно»

Многие задачи легко решаются, если заметить, что некоторая величина имеет определённую чётность. Из этого следует, что ситуации, в которых данная величина имеет другую чётность, невозможны. Иногда эту величину надо «сконструировать», например, рассмотреть чётность суммы или произведения, разбить объекты на пары. Заметить чередование состояния, раскрасить объекты в два цвета и т.д.

Примеры.

  1. Кузнечик прыгал вдоль прямой и вернулся в исходную точку (длина прыжка 1м). Докажите, что он сделал чётное число прыжков.


Решение. Поскольку кузнечик вернулся в исходную точку. Количество прыжков вправо равно количеству прыжков влево, поэтому общее количество прыжков чётно.

  1. Докажите, что если в сумме, где все слагаемые нечётные, их численное количество чётно, то и сумма будет чётной и наоборот.



Обратный ход

Если в задаче задана некоторая операция, и она обратима, то можно сделать «обратный» ход от конечного результата к исходным данным. (Например, надо вынести шкаф из комнаты. Пройдёт ли он через дверь? Пройдёт, потому что через дверь его внесли). Анализ с конца используют при поиске выигрышных и проигрышных ситуаций.

Примеры.

  1. Три мальчика делили 120 фантиков. Сначала Петя дал Ване и Толе столько фантиков, сколько у них было. Затем Ваня дал Толе и Пете столько, сколько у них стало. И, наконец, Толя дал Пете и Ване столько, сколько у них к этому времени имелось. В результате всем досталось поровну. Сколько было фантиков у каждого вначале?


Решение. Мы знаем, что в конце у всех оказалось по 40 фантиков. А перед этим у Пети и Вани было вдвое меньше. Значит, у Пети и Вани было вдвое меньше – по 20, а у Толи – 80. А перед этим у Пети и Толи было вдвое меньше, т.е. у Пети было 10, у Толи 40, у Вани – 70. И, наконец, возьмём половину фантиков у Вани и Толи и вернём Пете.

Ответ: у Пети было 65 фантиков, у Вани – 20, а у Толи – 35.


  1. Задумали некоторое число, умножим его на 12, от результата отняли 10, полученное разделили на 2, затем от частного отняли 1 и разность разделили на 2. Получилось столько, сколько месяцев в году. Какое число задумали?



Метод таблиц

Примеры.

1. Барсук позвал к себе гостей:

Медведя, рысь и белку.

И подарили барсуку

Подсвечник и тарелку.

Когда же он позвал к себе

Рысь, белку, мышку, волка,

То он в подарок получил

Подсвечник и иголку.

Им были вновь приглашены

Волк, мышка и овечка.

И получил в подарок он

Иголку и колечко.

Он снова пригласил овцу,

Медведя, волка, белку.

И подарили барсуку

Колечко и тарелку.

Нам срочно нужен ваш совет.

(На миг дела отбросьте).

Хотим понять, какой предмет

Каким подарен гостем,

И кто из шестерых гостей

Явился без подарка?

Не можем мы сообразить,

Сидим… Мудрим… Запарка…

Решение. Составим таблицу 6Х4 и из первого четверостишия делаем

выводы:

  1. медведь, рысь, белка не дарили иголку и колечко;

  2. мышка, волк, овца не дарили подсвечник и тарелку.

Получаем таблицу:




Медведь

Рысь

Белка

Мышка

Волк

Овца

Подсвечник

-

+

-

-

-

-

Иголка

-

-

-

+

-

-

Тарелка

+

-

-

-

-

-

Кольцо

-

-

-

-

-

+

Ответ виден из таблицы.

    1. . Докажите, что любое число рублей можно уплатить, если покупатель и кассир имеют лишь трёхрублёвые и пятирублёвые купюры.

Решение. Составим таблицу, приведя в пример числа от 1 до 10.

Число

Покупатель

Кассир

1

3 + 3 = 6

5

2

5

3

3

3

-

4

5 + 5 = 10

3 + 3 = 6

5

5

-

6

3 + 3 = 6

-

7

5 + 5 = 10

-

8

5 + 8 = 8

-

9

3 + 3 + 3 = 9

-

10

5 + 5 = 10

-

Ответ виден из таблицы.


Метод граф

Слово «граф» в математической литературе появилось совсем недавно. Понятие графа используется не только в математике, но и в технике и даже в повседневной жизни под разными названиями – схема, диаграмма.

Особенно большую помощь графы оказывают при решении логических задач. Представляя изучаемые объекты в наглядной форме, «графы» помогают держать в памяти многочисленные факты, содержащиеся в условии задачи, устанавливать связь между ними.

Графом называется любое множество точек, некоторые из которых соединены линиями или стрелками. Точки, изображающие элементы множества, называют вершинами графа, соединяющие их отрезки – рёбрами графа. Точки пересечения рёбер графа не являются его вершинами. Во избежание путаницы вершины графа часто изображают не точками, а маленькими кружочками. Рёбра иногда удобнее изображать не прямолинейными отрезками, а дугами.

Примеры.

1. В первенстве класса по теннису 6 участников: Андрей, Борис, Виктор, Галина, Дмитрий и Елена. Первенство проводилось по круговой системе: каждый из участников играет с каждым из остальных один раз. Некоторые игры уже проведены: Андрей сыграл с Борисом, Галиной и Еленой, Борис с Галиной, Виктор с Галиной, Дмитрием и Еленой. Сколько пар проведено и сколько ещё осталось?

Решение. Изобразим данные задачи в виде схемы. Участников будем изображать точками, Андрея – А, Бориса – Б и т.д.. Если двое участников уже сыграли между собой, то будем соединять их точки отрезками.

Б В


А Г


Е Д

Число игр, уже проведённых, равно числу рёбер, т.е.7.

Чтобы найти число игр, которые осталось провести, построим ещё один граф с теми же вершинами, но рёбрами будем соединять тех участников, которые ещё не играли друг с другом. (Если точки из одного множества соответствуют точкам из другого, будем соединять их сплошной линией, а если не соответствуют – пунктирной).

Б В


А

Г

Е Д

Рёбер у этого графа оказалось 8, значит, осталось провести 8 игр.


2. В первенстве по шахматам участвуют пять человек: Андрей, Борис, Валя, Галя, Дима. Каждый из участников должен сыграть с другими 1 раз. Сколько игр надо провести?


Метод кругов Эйлера

Этот метод даёт ещё более наглядное представление о возможном способе изображения условий, зависимости, отношений в логических задачах.

Один из величайших математиков петербургский академик Леонард Эйлер за свою долгую жизнь (он родился в 1707 г., а умер в 1783 г.) написал более 850 научных работ. В одной из них и появились эти круги. Эйлер писал тогда, что «они очень подходят для того, чтобы облегчить наши размышления». Наряду с кругами в подобных задачах применяют прямоугольники и другие фигуры.

Примеры.

1. Часть жителей города умеет говорить только по-русски, часть – только по-узбекски и часть умеет говорить на обоих языках. По-узбекски говорят 85%, по-русски 75%. Сколько процентов жителей говорят на обоих языках?

Решение. Составим схему –







У ? Р

85% 75%


В кружке под буквой «У» обозначим жителей, говорящих по-узбекски, под буквой «Р» - по-русски. В общей части кружков обозначим жителей, говорящих на обоих языках. Теперь от всех жителей (100%) отнимем кружок «У» (85%), получим жителей, говорящих только по-русски (15%). А теперь от всех, говорящих по-русски (75%), отнимем эти 15%. Получим говорящих на обоих языках (60%).

  1. Из 32 учащихся класса 12 – мальчики. Из них 8 занимаются футболом, 9 – баскетболом, 3 – плаванием. Сколько мальчиков занимаются тремя видами спорта?



Комбинированный метод

Метод, при котором задачу можно решить несколькими способами.

Пример. Имеются кубики из картона и из дерева, большие и маленькие,

красные и зелёные. Известно, что:

  1. зелёных кубиков 16;

  2. зелёных больших 6;

  3. больших зелёных из картона 4;

  4. красных из картона 8;

  5. красных из дерева 9;

  6. больших деревянных 7;

  7. маленьких деревянных 11.

Сколько всего кубиков?

Решение. I. Сложив 1), 4), 5), получим 16 + 8 + 9 = 33

II.Из рисунка получаем:




картон. красные деревянн.

4 2 5 большие

8 зелён

3 7 4 маленькие


Всего кубиков 2 + 3 + 4 + 7 + 8 + 5 + 4 = 33


Заключение


Предложенный материал «Методы решения логических задач » можно использовать как на уроках математики, так и на внеклассных занятиях учащимся 5-9-х классов, учителям с целью подготовки учащихся к решению олимпиадных заданий, интеллектуальным конкурсам «Марафон знаний», региональному конкурсу «Кенгуру».


Библиографический список


  1. Акири И.К. Логические упражнения на уроках математики. Тирасполь, 1991.

  2. Айзенк Г.Ю. Проверьте свои способности. М., 1972.

  3. Вершинина З., Горбатенко Т., Шагинян О. Развиваем математическое мышление.

  4. Гайшут А.Г. Математика в логических упражнениях. Киев, 1985.

  5. Гусев В.А., Орлов А.И., Розенталь А.Л. Внеклассная работа по математике в 4 – 6 классах.

  6. Далингер В.А. Методика реализации внутрипредметных связей при обучении математике.

  7. Колягин Ю.М. Задачи в обучении математике.

  8. Краснослабоцкая Г.В. Формирование компонентов общей культуры мышления школьников.

  9. Махров В.Г. Решение логических задач.

  10. Махров В.Г. Развивающие задачи по математике.

  11. Махров В.Г. Задачи-сказки.

  12. Миракова Т.Н. Об уровне языкового развития учащихся VI – VII классов.

  13. Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка.

  14. Никольская И. … И эти палочки – трагедии знаменье.

  15. Чесноков А.С., Шварцбург Г.И. и др. Внеклассная работа по математике в 4 – 5 классах.

Похожие:

Научно-исследовательская работа «методы решения логических задач» iconКурсовая работа по геометрии на тему «Знаменитые задачи геометрии»
Многие ученые (от древнего мира до наших дней) предлагала свои решения этих задач, и в данной работе будут рассмотрены причины возникновения...
Научно-исследовательская работа «методы решения логических задач» iconЭволюционные процедуры решения комбинаторных задач на графах*
В работе излагается методика представления решения на базе матрицы смежности графа, адаптивные механизмы видоизменения матрицы смежности,...
Научно-исследовательская работа «методы решения логических задач» iconМетодические указания к лабораторным занятиям дисциплины «Численные методы решения задач математической физики»
«Численные методы решения задач математической физики» для специальности 050601 Математика
Научно-исследовательская работа «методы решения логических задач» iconПояснительная записка Спецкурс «Решение логических задач»
Спецкурс «Решение логических задач» предназначен для обучающихся 5 класса общеобразовательных учреждений. Курс основан на знаниях...
Научно-исследовательская работа «методы решения логических задач» iconМетоды решения физических задач
С помощью решения задач сообщаются знания о конкретных объектах и явлениях, создаются и решаются проблемные ситуации, формируются...
Научно-исследовательская работа «методы решения логических задач» iconРешение задач различного типа 14 Решение занимательных задач Г. Остера, логических задач, задач международной игры «Кенгуру»
Краткие биографии учёных-математиков: Л. Эйлер, Декарт, Евклид, Ферма, Пифагор, Архимед. Системы исчисления
Научно-исследовательская работа «методы решения логических задач» iconИнформационные модели и методы решения задач ортогонального раскроя-упаковки на основе конструктивных и нейросетевых подходов
Работа выполнена на кафедре информационных технологий гоу впо «Сибирский государственный технологический университет»
Научно-исследовательская работа «методы решения логических задач» iconУтверждаю декан фпмк а. М. Горцев "1" марта 2011 г
Обучаемый знакомится с классификацией задач оптимизации, методами решения этих задач и применением методов для решения конкретных...
Научно-исследовательская работа «методы решения логических задач» iconСодержание Введение
Представленная работа посвящена теме «Использование условных функций и логических выражений при решении задач в Excel»
Научно-исследовательская работа «методы решения логических задач» icon«Юный комбинатор»
Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать,...
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib2.znate.ru 2012
обратиться к администрации
Библиотека
Главная страница