Координат центра тяжести плоской фигуры




НазваниеКоординат центра тяжести плоской фигуры
Дата03.02.2016
Размер8.53 Kb.
ТипДокументы

Библиотека 5баллов.ru


Соглашение об использовании

Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных заведениях.

Во всех остальных случаях полное или частичное воспроизведение, размножение или распространение материалов данного файла допускается только с письменного разрешения администрации проекта www.5ballov.ru.

РосБизнесКонсалтинг



Вычисление координат центра тяжести плоской фигуры


I.Координаты центра тяжести.


Пусть на плоскости Oxy дана система материальных точек

P1(x1,y1); P2(x2,y2); ... , Pn(xn,yn)

c массами m1,m2,m3, . . . , mn.

Произведения ximi и yimi называются статическими моментами массы mi относительно осей Oy и Ox.

Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами:





Эти формулы используются при отыскании центров тяжести различных фигур и тел.


1.Центр тяжести плоской фигуры.


Пусть данная фигура, ограниченная линиями y=f1(x), y=f2(x), x=a, x=b, представляет собой материальную плоскую фигуру. Поверхностною плотность, то есть массу единицы площади поверхности, будем считать постоянной и равной для всех частей фигуры.

Разобьем данную фигуру прямыми x=a, x=x1, . . . , x=xn=b на полоски ширины x1, x2, . . ., xn. Масса каждой полоски будет равна произведению ее площади на плотность . Если каждую полоску заменить прямоугольником (рис.1) с основанием xi и высотой f2()-f1(), где , то масса полоски будет приближенно равна

(i = 1, 2, ... ,n).

Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника:



Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры:



Переходя к пределу при , получим точные координаты центра тяжести данной фигуры:



Эти формулы справедливы для любой однородной (т.е. имеющей постоянную плотность во всех точках) плоской фигуры. Как видно, координаты центра тяжести не зависят от плотности фигуры (в процессе вычисления сократилось).


2. Координаты центра тяжести плоской фигуры


В предыдущей главе указывалось, что координаты центра тяжести системы материальных точек P1, P2, . . ., Pn c массами m1, m2, . . ., mn определяются по формулам

.

В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры:


(*)

Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность .

Если же поверхностная плотность переменна:



то соответствующие формулы будут иметь вид




Выражения



и



называются статическими моментами плоской фигуры D относительно осей Oy и Ox.

Интеграл выражает величину массы рассматриваемой фигуры.


3.Теоремы Гульдена.


Теорема 1.

Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги.

Теорема 2.

Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры.


II.Примеры.


1)Условие: Найти координаты центра тяжести полуокружности X2+Y2=a2, расположенной над осью Ox.

Решение: Определим абсциссу центра тяжести: ,



Найдем теперь ординату центра тяжести:



2)Условие: Определить координаты центра тяжести сегмента параболы y2=ax, отсекаемого прямой, х=а (рис. 2)


Решение: В данном случае поэтому



(так как сегмент симметричен относительно оси Ox)

3)Условие: Определить координаты центра тяжести четверти эллипса (рис. 3)



полагая, что поверхностная плотность во всех точках равна 1.

Решение: По формулам (*) получаем:





4)Условие:

Найти координаты центра тяжести дуги цепной линии .

Решение:

1Так как кривая симметрична относительно оси Oy, то ее центр тяжести лежит на оси Oy, т.е. Xc= 0. Остается найти . Имеем тогда длина дуги



Следовательно,





5)Условие:

Пользуясь теоремой Гульдена найти координаты центра тяжести четверти круга

.

Решение:

При вращении четверти круга вокруг оси Ох получим полушар, объем которого равен

Согласно второй теореме Гульдена, Отсюда Центр тяжести четверти круга лежит на оси симметрии, т.е. на биссектрисе I координатного угла, а потому


III.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


  1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. “Высшая математика в упражнениях и задачах”, часть 2, “Высшая школа”, Москва, 1999.

  2. Пискунов Н.С. “Дифференциальное и интегральное исчисления для втузов”, том 2, “Наука”, Москва, 1965

Похожие:

Координат центра тяжести плоской фигуры iconМетодические указания по изучению дисциплины
Геометрические свойства эллипса, гиперболы и параболы. Преобразование координат и упрощение уравнений второго порядков. Поверхности...
Координат центра тяжести плоской фигуры iconМетодические рекомендации Форма и указания ф со пгу 18. 1/05
Смешанное произведение векторов, его свойства. Общие аффинные и декартовы прямоугольные координаты. Понятие алгебраической линии...
Координат центра тяжести плоской фигуры iconРасчетно-графическая работа геометрические характеристики поперечных сечений стержней
Для сечений, размерах, указанных в таблице 2, требуется определить: положение центра тяжести; положение главных центральных осей...
Координат центра тяжести плоской фигуры iconУрок презентация на тему: «Явление тяготения. Сила тяжести»
Цель урока: ученики должны усвоить, что такое явление тяготения и сила тяжести на уровне применения знаний в знакомой ситуации
Координат центра тяжести плоской фигуры iconНа основе мкэ в смешанной формулировке при осесимметричном нагружении
Деформации оболочки вращения при осесимметричном нагружении. В декартовой системе координат xOz отсчётный меридиан оболочки вращения...
Координат центра тяжести плоской фигуры iconЛ. П. Хорошун дискретизация плоской задачи о растяжении тела
Наиболее распространенные из этих подходов известны как энергетические, силовые и деформационные критерии разрушения
Координат центра тяжести плоской фигуры iconСписок рекомендованої літератури для лікарів-інтернів сипливый В. А., Дронов А. И., Конь Е. В. Оценка тяжести хирургического больного. К.: Науковий Світ, 2004
Сипливый В. А., Дронов А. И., Конь Е. В. Оценка тяжести хирургического больного. – К.: Науковий Світ, 2004. – 101с
Координат центра тяжести плоской фигуры iconОтчет о работе Координационного центра
Положением об организации деятельности Координационного центра, утвержденного приказом Роспотребнадзора от 11. 06. 09 №404 «О внесении...
Координат центра тяжести плоской фигуры iconРабочая программа учебной дисциплины
Программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта по профессии начального...
Координат центра тяжести плоской фигуры iconОтчет студенческого центра труда
Студенческий центр труда начал работу с ноября 2005года. Работа центра ведется по следующим направлениям
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib2.znate.ru 2012
обратиться к администрации
Библиотека
Главная страница