Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации




Скачать 16.59 Kb.
НазваниеДенис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации
страница14/25
Дата04.02.2016
Размер16.59 Kb.
ТипДокументы
1   ...   10   11   12   13   14   15   16   17   ...   25

   Примечание. В таблице указана физическая (реальная) частота шины, а не эффективная. Привыкайте: при разгоне нужно учитывать именно физическую частоту!

   Не нужно быть выдающимся математиком, чтобы заметить, что производительность всех процессоров повысилась на 50 %. А это ощутимо – не то что обещанные 10–20 %.
   К тому же если вы интересовались историей развития и характеристиками процессоров, то заметили, что в данной таблице представлены самые простые (дешевые) модели из линейки процессоров. Только не подумайте, что они разгоняются лучше, чем их более дорогие собратья. Нет, более дорогие процессоры, наоборот, более приемлемы для разгона. Вы только подумайте, если взять процессор Pentium IV 2,4 ГГц (а не 1,6 ГГц, из которых мы выжали 2,4 ГГц), то из него с легкостью можно выжать 2,7 ГГц, при этом не особо навредив ему, – ведь мы повысим производительность всего на 12 %.
   Я хочу, чтобы вы задумались о запасе прочности. Ведь если процессор Pentium IV «Northwood» с частотой 1,6 ГГц может работать на частоте 2,4 ГГц, то почему он промаркирован всего как 1,6 ГГц? Вы об этом не задумывались? Почему сразу не написать 2,4 ГГц? Запас запасом, но уж больно он большой – 800 МГц.
   При производстве процессоров довольно большой процент брака. Но брак бывает разный. Бывают процессоры, которые вообще не работают: понятно, они в продажу не поступают. Но больше всего бракованных процессоров не могут работать с большей частотой или работают на ней нестабильно. Тогда производитель всего лишь снижает частоту процессора до допустимой, на которой данная микросхема стабильно работает. Поэтому один процессор вы сможете разогнать до 2,4 ГГц, а второй (такой же) не получится разогнать и до 2,0 ГГц. Об этом тоже нужно помнить.
 //-- Разгон памяти. Тайминги --// 
   Разогнать можно даже оперативную память. Причем разгону подвержены большинство модулей (в той или иной степени). Результат разгона зависит от качества самих модулей памяти и от качества сборки.
   Зачем нужно разгонять память? Вот в предыдущем случае мы увеличили частоту процессора Celeron «Tualatin» до 1,5 ГГц, подняв частоту шины до 150 МГц. Но память-то по-прежнему работает с меньшей частотой. Вот если бы заставить и память работать на частоте 150 МГц, производительность всей системы была бы поднята более гармонично.
   Но при разгоне памяти нужно быть предельно осторожным – иначе система будет работать очень нестабильно. А все это из-за того, что в BIOS не всегда правильно отображается реальная частота работы памяти. Обычно отображается эффективная частота по отношению к штатной частоте процессора (то есть не разогнанной). Но когда мы разгоняем процессор, увеличивая частоту FSB, поднимается и частота работы памяти, а BIOS по-прежнему показывает старое значение. Вы пытаетесь его повысить (не зная, что она уже повышена) и легко превышаете допустимый предел…
   Пусть у нас есть память PC2-4300 (DDR2-533) и процессор Core 2 Duo E6300 «Conroe». В штатном режиме частота FSB равна 266 МГц (FSB1066). Мы повысили частоту FSB до 333 МГц (это уже FSB1333). Частота памяти подтянулась уже до значения 667 МГц (DDR2-667), но BIOS стоит на своем – мол, всего лишь 533 МГц. Вы пытаетесь поднять частоту памяти и превышаете допустимый предел.
   Иногда в BIOS выводится два значения: штатная частота памяти и реальная. В этом случае проще, так как сразу видна частота, на которой работает память.
   Помните, что при повышении FSB повышается и частота памяти. В некоторых случаях можно еще повысить эту частоту, но не удивляйтесь, почему сгорела «оперативка».
   В предыдущих главах мы говорили о таймингах (задержках). Чем меньше задержки, тем выше производительность. Однако, чтобы память стабильно работала на повышенных частотах, нужно, наоборот, увеличить задержки. Когда будете экспериментировать с процессором, установите задержку для памяти на уровне 5–5–5–15 (можно и больше). Ко гда найдете ту самую оптимальную частоту процессора, можно постепенно уменьшать тайминги и анализировать работу системы. Если с меньшими задержками памяти система будет работать стабильно, можно так и оста вить. В противном случае нужно повысить задержки до более высокого уровня.

 //-- Разгон видеокарты --// 
   Частота видеокарты никак не зависит ни от частоты процессора, ни от частоты FSB, ни от частоты памяти, поскольку у видеокарты свой тактовый генератор. Разогнать видеокарту можно или с помощью панели управления драйвером видеокарты, или с помощью специальных программ.
   Разгон видеокарты мы рассматривать не будем. Не потому, что это сложно, а потому, что нам и так есть о чем говорить – мы еще не рассмотрели практический разгон процессоров, не говоря уже о видеокарте. Но в Интернете (при желании) вы без проблем найдете информацию по разгону видеокарты. Вот, например, одна из ссылок, позволяющих выбрать программу для разгона видеокарты:
   http://www.izcity.com/data/soft/article533.htm.

   Особенности разгона процессоров

   Разогнать можно любой процессор – как уже было показано, даже 8088. Понятно, что мы не будем рассматривать разгон всех существующих процессоров. Это просто нереально, да и лишено всякого смысла. Поэтому остановимся на процессорах сегодняшнего дня, а именно на процессорах AMD и Intel для сокетов AM2 и LGA775.
 //-- Celeron D 331 для LGA775 --// 
   Данный процессор (рис. 18.1) основан на том же ядре (кодовое название Prescott), что и его более высокопроизводительные собратья – процессоры Pen tium IV, а его «низкая» частота (2,66 ГГц) позволяет хорошенько его разо гнать.
   Обратите внимание на модель процессора. В данном случае – 331. У модели 310 возможен безпроблемный переход с FSB 533 МГц до 800 МГц, при этом напряжение останется на прежнем уровне.

 //-- Рис. 18.1. Процессор Intel Celeron D 331 --// 
   С моделью 315 сложнее – нужно повысить напряжение до 1,45 В, чтобы достичь частоты FSB 800 МГц (это эффективная, а не реальная частота) и частоты процессора 3,4 ГГц. Превышать напряжение до 1,5 В нежелательно, если вы хотите, чтобы процессор работал долго.
   С моделью 331 небольшая проблема. В штатном режиме данный процессор работает с множителем 20x. Если поднять частоту до FSB800 (реальная частота – 200 МГц), то процессор должен будет работать с частотой 4,0 ГГц, а это далеко не всегда возможно.
   Поэтому о частоте FSB 800 МГц для этого процессора лучше забыть, а использовать нестандартную частоту FSB 667 МГц (реальная частота 166 МГц). В этом случае частота процессора будет равна 3,33 ГГц, что вполне приемлемо: мы увеличили частоту почти на 700 МГц, и при этом процессор не пострадает. К тому же в таком режиме он может работать со стандартным вентилятором от Intel (коробочным), и вы сэкономите немного денег.
 //-- Core 2 Duo E6300 LGA775 --// 
   Процессор E6300 (рис. 18.2) – настоящий лакомый кусочек для овер-клокера. Его без особых проблем можно разогнать до 2,6 ГГц (его штатная частота – 1,86 ГГц), при этом даже не заменяя вентилятор.
   Но 2,6 ГГц – это не предел, скорее, это допустимый предел, при котором система будет работать надежно. Такие процессоры без особого труда можно разогнать и до 3,0 ГГц, правда, возможно, придется заменить вентилятор.
   При разгоне этого процессора нужно помнить, что нельзя превышать напряжение 1,45 В.

 //-- Рис. 18.2. Процессор Core 2 Duo E6300 --// 
   Руководство по разгону данного процессора вы можете прочитать по адресу:
   http://www.thg.ru/cpu/core2duoe6300overclock/index.html.
 //-- Sempron 2800+ для Socket AM2 --// 
   Sempron Manila (рис. 18.3) – самый дешевый процессор от AMD для сокета AM2. Его реальная частота всего 1,6 ГГц. Но путем разгона из него можно выжать больше 2,6 ГГц, однако в этом случае придется поднять напряжение до 1,6 В. Правда, не надейтесь, что в таком экстремальном режиме процессор протянет больше года.
   Если вы хотите, чтобы процессор проработал хотя бы два года (а может, и больше – как повезет), не следует превышать напряжение 1,5 В. В этом случае частота процессора будет примерно 2,4 ГГц (частота шины – 300 МГц), что вполне достаточно. Разницу в 200 МГц (2,6 и 2,4 ГГц) вы не почувствуете, а вот то, что через полгода он не сгорит, – это точно.
   Если вы решились поднять напряжение выше 1,5 В, то забудьте о родном вентиляторе. Вам нужен высокопроизводительный вентилятор, о выборе которого мы поговорим позже.

 //-- Рис. 18.3. Sempron 2800+ --// 
 //-- Athlon 64 X2 4200+ для AM2 --// 
   Процессор Athlon 64 X2 (рис. 18.4) не самый хороший выбор для овер-клокера. Многие процессоры забракованы и поэтому переведены на более низкие частоты. Особенно туго разгоняются процессоры X2 3800+ – лучше вообще с ними не экспериментировать.

   Процессоры X2 4200+ разгоняются довольно неплохо (особенно по сравнению с 3800+), но если вы хотите, чтобы ваш процессор жил долго и счастливо, не нужно превышать порог 1,5 В – это критическое значение для данного процессора.
   Из X2 4200+ можно выжать максимум 2,75 ГГц реальной частоты, повысив частоту шины до 250 МГц.
   При разгоне процессоров Athlon 64 X2 наблюдайте за его температурой (есть соответствующий пункт в SETUP – PC Health). Если температура процессора поднимается выше 55 градусов – снижайте напряжение (соответственно, и частоту) или отправляйтесь в магазин за мощным вентилятором, иначе процессор с такой температурой долго не протянет.

 //-- Рис. 18.4.athlon 64 x2 4200+ --// 

   Алгоритм разгона процессора

 //-- Подготовка к разгону: снижение частоты памяти, увеличение таймингов --// 
   Разгон процессора – дело пяти минут, при условии, что вы знаете, что делаете. А если таких знаний пока нет, то придется почитать мои комментарии.
   Как уже было отмечено, разгонять процессор будем путем повышения частоты шины, а не множителя, поскольку изменять множитель можно далеко не на всех процессорах. Поэтому ограничимся только повышением частоты системной шины. К тому же данный способ имеет еще одно преимущество. Ведь частота памяти зависит от частоты шины. Следовательно, увеличивая частоту системной шины, мы увеличиваем и частоту памяти, таким образом повышая производительность всей системы в целом, а не только производительность процессора, как это было бы в случае разгона множителем.
   Перед разгоном вам не помешало бы изучить руководство по собственному BIOS, чтобы знать, где находятся опции, необходимые для разгона.
   Итак, приступим к разгону. Зайдите в BIOS. Если вы не знаете, как это сделать или что это вообще такое, то прочитайте главу 4. Внимательно прочитайте ее, потому что от незнания можно в лучшем случае не сделать хуже, а в худшем – навредить системе.

   Не спешите сразу увеличивать частоту системной шины, даже если вы знаете, как это сделать (например, уже прочитали об этом в руководстве по материнской плате). Нужно сначала найти опцию BIOS, устанавливающую частоту работы памяти. Она может быть в разделе Advanced Chipset Features, или в разделе Advanced, или POWER BIOS Features (зависит от версии вашей BIOS). Сама опция может называться так:
   • Memclock index value;
   • System Memory Frequency;
   • Memory Frequency;
   • другое название (читайте руководство по материнской плате!).

   Данная опция позволяет установить частоту оперативной памяти. В качестве значений могут использоваться значение частоты или обозначения вида DDR400, DDR333, DDR266 и т. д. Нужно выбрать самое минимальное из доступных значений.
   Спрашивается, зачем нужно устанавливать минимальную частоту памяти, ведь она же способна на большее? Но помните, ведь мы разгоняем процессор путем повышения частоты FSB. А при увеличении частоты системной шины будет повышаться и частота памяти, не ограничивая возможности разгона. Другими словами, частота памяти и так достигнет свей нормы (даже превысит ее), зато не будет ограничивать разгон процессора. Ведь если выставить максимальную частоту памяти, то при малейшем поднятии частоты системной шины будет превышена допустимая частота памяти и мы не сможем разогнать процессор по максимуму.
   После этого нужно найти опцию, устанавливающую тайминги памяти. Обычно она называется Memory Timing или Timing Mode. Как правило, для этой опции установлено значение Auto. Измените его и установите самые большие тайминги из всех возможных. Позже мы их будем понижать.
   Самые большие тайминги нужны для стабильной работы системы после разгона. Ведь материнская плата обычно рассчитана на штатные частоты системной шины и процессора, а после разгона в режиме Auto она может установить очень маленькие тайминги, и система с ними не будет работать. А если мы установим заранее рабочие тайминги, которые к тому же далеки от минимальных, система, по крайней мере, запустится.
   После того как вы настроите память, выйдите из SETUP с сохранением настроек. Обычно для этого нужно нажать F10, а затем подтвердить сохранение, нажав Y. После перезагрузки убедитесь, что компьютер нормально, без ошибок загружается. Хотя на данном этапе ошибок быть не должно.
   Снова зайдите в SETUP. Теперь нам нужно проверить частоты шин PCI и AGP. Дело в том, что при увеличении частоты системной шины частоты шин PCI, PCI-Ex, AGP могут тоже повыситься. При незначительном повышении FSB ничего страшного не произойдет. А вот при значительном компьютер откажется работать.
   Номинальное значение частоты для шины PCI – 33,3 МГц, для AGP – 66,6 МГц. Многие чипсеты умеют контролировать данные частоты – держать их в пределах номинальных значений, но на всякий случай убедитесь в этом. Найдите опцию AGP/PCI Clock и убедитесь, что для нее установлено значение 66,6/33,3 МГц.
   Некоторые чипсеты (например, практически все чипсеты от VIA, ранние чипсеты Intel, SiS) не умеют контролировать частоту AGP/PCI. Поэтому подходящей опции вы не найдете в SETUP. В этом случае вам не повезло. Ведь вы вряд ли сможете поднять частоту системной шины выше 225 МГц. Даже если у вас и получится сделать это, система будет работать неполноценно – перестанут определяться жесткие диски, откажется работать видеокарта или звуковая плата.
   Для чипсетов от nVidia важной является частота шины HyperTransport. Обычно она равна 1000 МГц (5х) или 800 МГц (4х). Перед разгоном процессора нужно уменьшить частоту этой шины. Опция, позволяющая это сделать, называется HyperTransport Frequency, или HT Frequency, или LDT Frequency. Нужно установить значение 3х (600 МГц) или 2х (400 МГц).
   Теперь снова сохраняем настройки и перезагружаем систему. Нужно убедиться, что все работает нормально – ведь мы, наоборот, понизили производительность системы.
 //-- Повышаем частоту системной шины (непосредственный разгон процессора) --// 
   Опять зайдите в SETUP. Сейчас мы приступим к разгону процессора. Для этого перейдите в раздел Frequency/Voltage Control. Этот же раздел в зависимости от BIOS может называться так:
   • POWER BIOS Features – на материнских платах EPOX;
   • Jumperfree Configuration – на материнских платах от ASUS (видимо, asus до сих пор помнит, что раньше разгон процессора осуществлялся джамперами на материнской плате, поэтому соответствующий раздел SETUP называется JumperFree – без джамперов);
   • µGuru Utility – у ABIT.

   Сейчас вам предстоит найти опцию, изменяющую частоту системной шины (FSB). Хорошо, если у вас есть под рукой руководство по материнской плате – тогда вы точно узнаете, как она называется. Но я вам, конечно, помогу, чем смогу. Данная опция может называться так:
   • CPU Host Frequency – в случае Award/Phoenix BIOS;
   • CPU Clock/Speed – на материнских платах EPoX;
   • CPU Frequency – у ASUS;
   • External Clock – у ABIT.

   Чтобы вам было понятнее, приведу листинги соответствующих разделов SETUP. Дать картинку невозможно, поскольку нет способа сделать снимок экрана SETUP. Разве что сфотографировать, но качество такой фотографии из-за мерцания монитора будет плохим, и вы вряд ли что-то рассмотрите.
 //-- Листинг 18.1. Раздел Frequency/Voltage Control --// 
1   ...   10   11   12   13   14   15   16   17   ...   25

Похожие:

Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconПримерная программа профессионального модуля
Выполнение работ по сборке и ремонту агрегатов и сборочных единиц сельскохозяйственных машин и оборудования
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconКомпьютер друг или враг?
В прошлом году мне купили компьютер и стали возникать вопросы: что будет с людьми, которые целый день сидят за компьютером? Как компьютер...
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconКак устроен компьютер. Клавиатурный тренажер в режиме ввода слов
Оборудование: доска, компьютер, проектор, компьютерная презентация «Как устроен компьютер»
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconКосенков Денис 8 «А» Городская олимпиада по химии

Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconКонкурсная документация по проведению открытого конкурса на выполнение работ по капитальному ремонту многоквартирных домов
Извещение о проведении открытого конкурса по привлечению подрядных организаций для выполнения работ по капитальному ремонту многоквартирного...
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации icon1 урок Введение в предмет
В. Б. Комягин, А. О. Коцюбинский. Современный самоучитель работы на компьютере. Стр 9
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconИллюстрированный самоучитель по p-cad
Создание установочного места компонента с помощью программы-мастера Pattern Wizard 46
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconПредисловие для осваивающих китайский язык
Дорогие друзья! Перед Вами – самоучитель современного разговорного китайского языка
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconСаратовский государственный технический университет проектирование технологической оснастки
Вспомогательные устройства, используемые при механической обработке, сборке, контроле изделий называют приспособлениями
Денис Колисниченко Компьютер. Большой самоучитель по ремонту, сборке и модернизации iconПрограмма модернизации здравоохранения
Паспорт Программы модернизации здравоохранения Архангельской области на 2011 – 2012 годы
Разместите кнопку на своём сайте:
Библиотека


База данных защищена авторским правом ©lib2.znate.ru 2012
обратиться к администрации
Библиотека
Главная страница